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integrating high spatial and temporal resolution data 
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ABSTRACT 

Background. Daily fire progression information is crucial for public health studies that examine 
the relationship between population-level smoke exposures and subsequent health events. Issues 
with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed 
exposures that impact the results of acute health effects studies. Aims. This paper provides a 
method for improving an FEI dataset with readily available information to create a more robust 
dataset with daily fire progression. Methods. High temporal and spatial resolution burned area 
information from two FEI products are combined into a single dataset, and a linear regression 
model fills gaps in daily fire progression. Key results. The combined dataset provides up to 71% 
more PM2.5 emissions, 69% more burned area, and 367% more fire days per year than using a 
single source of burned area information. Conclusions. The FEI combination method results in 
improved FEI information with no gaps in daily fire emissions estimates. Implications. The 
combined dataset provides a functional improvement to FEI data that can be achieved with 
currently available data.  

Keywords: acute health effects studies, burned area, cloud cover, environmental epidemiology, 
exposure modelling, fire remote sensing, PM2.5, wildfire smoke exposure, wildfire smoke 
transport. 

Introduction 

Inhaling wildfire smoke can cause various health effects in humans (Yao et al. 2016;  
Borchers Arriagada et al. 2019; Liu et al. 2019). Wildfire smoke can be transported 
through the atmosphere, impacting communities far from the actual fire. As wildfire 
frequency, intensity, and duration are projected to increase under a changing climate 
(Liu et al. 2016; Aguilera et al. 2021), understanding the health effects of inhaling 
wildfire smoke is essential. Some of the most important health effects to understand 
are acute health effects, which occur shortly after exposure and are typically short-lived 
(Ye et al. 2022). To estimate the acute health effects of inhaling wildfire smoke, a public 
health study requires estimates of the concentration of pollutants from wildfire smoke on 
a daily time scale. 

Information on fire behaviour or activity is needed to estimate the concentration of 
pollutants from wildfire smoke in a specific area. An FEI is a combination of fire 
behaviour information (i.e. data that accounts for burned area, the amount of vegetation 
burned (fuel loading)), and emissions factor (i.e. data that accounts for the compound of 
interest and fuel characteristics) to estimate the amount of emissions released by each 
individual fire (Urbanski et al. 2018). Single-fire information is useful for health effects 
studies because it allows for the linking of health effects to combustion type and fuel 
type. It can also be helpful to incorporate plume ageing and smoke transport factors when 
more than one smoke plume impacts a specific area. There is no definitive method to 
measure the amount of emissions released from a single fire (Hao and Larkin 2014; Black 
et al. 2017). FEIs offer a reasonable estimate of fire emissions for use in health effects 
studies. 
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While prior studies recognise the importance of under
standing the health effects of inhaling wildfire smoke (Gao 
et al. 2023; Pan et al. 2023; Reid et al. 2023), existing 
literature reveals notable gaps in methods for estimating 
acute human exposure (Black et al. 2017). Challenges in 
estimating acute smoke exposure are related to limitations 
with FEIs, atmospheric models, and remote sensing technol
ogies. While there have been recent advancements in geo
stationary satellite remote sensing capabilities, historically, 
satellite remote sensing fire and smoke products struggle to 
capture the high temporal resolution required for acute 
exposure estimates (Wooster et al. 2021). Satellite remote 
sensing also faces issues with cloud cover (Hawbaker et al. 
2017), has difficulty sensing small fires (Laris 2005; Roteta 
et al. 2019), and lacks a conclusive method of direct mea
surement of fire emissions that would allow for validation 
(Giglio and Roy 2020). These challenges underscore the 
need for development of more robust methodologies for 
estimating acute exposure to wildfire smoke. 

Currently, FEIs rely heavily on satellite remote sensing to 
determine the input variables for the emissions model, espe
cially for near real-time fire detection. Fire ignition, fire 
progression, burned area, and fuel loading are often deter
mined using remote sensing, but can also be supplemented 
with fire spread models or burn reports (i.e. bottom-up 
approaches). Remote sensing provides many advantages, 
including global coverage and the ability to provide infor
mation in near real-time (Wooster et al. 2021). However, 
many FEIs currently do not focus on providing real-time 
data; instead, they provide a consistent long-term dataset 
for understanding historical fire trends. The current state of 
the science for high temporal resolution remote sensing of 
fires uses geostationary satellites (Li et al. 2022), which 
constantly monitor the same region, providing a constant 
record of the fire. The state of the science for high spatial 
resolution remote sensing of burned area relies on changes 
in land reflectance over time (Eidenshink et al. 2007). 
Products with the shortest latency for remotely sensing 
fires can be accessed within hours (Soja et al. 2009). 

Other issues with FEIs include emissions factors that are 
difficult to measure, and those emissions factors that can be 
measured may lack generalisability due to the complex nature 
of fire behaviour (Larkin et al. 2014). Because of the com
plexities of fire behaviour, there is no way to measure fire 
emissions directly to create a validation dataset (Black et al. 
2017). Additionally, fuel load can be incredibly diverse in 
properties and vary highly in time and space, creating uncer
tainties in estimating fuel loading (Keane 2013). The complex 
nature of fire behaviour means many FEI datasets are created 
using several different methods for estimating the components 
of fire emissions (i.e. emissions factors and fuel loading), and 
the lack of validation data means we cannot determine which 
method is most accurate (Faulstich et al. 2022). 

Although the fire science community understands the 
shortcomings of FEIs, many suggestions for improvement 

concentrate on enhancing input datasets or seeking valida
tion through costly, in-depth field campaigns (Roy et al. 
2007; Soja et al. 2009). While these in-depth studies 
improve our understanding of fire emissions, using current 
available information to explore alternative possibilities for 
enhancing existing datasets is crucial to make improvements 
in current studies that rely on FEIs. This study aims to 
improve existing FEIs by combining high spatial and tempo
ral resolution data from two existing FEI products. 

The focus of this paper is to present a method to create a 
combined FEI and discuss the advantages of the method, 
with a focus on using the combined FEI for public health 
research. Combining two sources of burned area informa
tion into one FEI allows models to use both high spatial and 
high temporal resolution satellite products. High spatial 
resolution data is essential to capture the most reliable 
burned area estimates, often used to approximate the fire 
size and intensity. Capturing the daily emissions profile is 
vital to understanding the acute health effects of inhaling 
wildfire smoke, making high temporal resolution data cru
cial. Combining these two sources of fire information can 
mitigate some of the disadvantages associated with each 
individual method for determining burned area. Adding a 
cloud cover interpolation eliminates gaps in daily fire emis
sions information. These two improvements allow the utili
sation of the combined dataset as input data into a smoke 
exposure model for an acute health effects study. 

Methods 

Each FEI uses a unique method to estimate overall fire 
emissions, meaning combining data from one FEI with 
data from another FEI is very difficult. However, one FEI, 
the Wildland Fire Emissions Information System (WFEIS), 
has separate emissions estimates products that use the high- 
resolution spatial product from Landsat Monitoring Trends 
in Burn Severity (MTBS) and the high-resolution temporal 
burned area product from the Moderate Resolution Imaging 
Spectrometer (MODIS) individually (French et al. 2014). 
WFEIS uses estimates of fuel loading, burned area, and fire 
characteristics to estimate total emissions from a fire. Fuel 
loading is multiplied by burned area to determine the 
amount of fuel burned, and this is scaled by an emissions 
factor to determine how much of a specific compound was 
released by that burned fuel. Further discussion of how 
WFEIS uses this information to estimate fire emissions can 
be found in French et al. (2014). Since the two emissions 
estimates are both from WFEIS, they have a consistent 
method to determine overall fire emissions and thus they 
can be combined into a single product with the advantages 
of both burned area products. Combining these two WFEIS 
emissions estimates products retains the high-quality spatial 
resolution information from MTBS while leveraging MODIS 
to include a daily temporal profile. 
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High spatial resolution (30 m) fire information comes 
from the LandSat Monitoring Trends in Burn Severity 
(MTBS) product (Eidenshink et al. 2007). MTBS provides 
burned area information using the LandSat remote sensing 
of land cover reflectance changes resulting from fires. The 
high spatial resolution LandSat data used in the MTBS prod
uct provides the most reliable burned area estimate for an 
individual fire. Because burned area plays a significant role 
in the emissions calculations, this value can have a large 
impact on the FEI emissions estimates. While the spatial 
resolution from the MTBS product is not retained in our 
FEI combination, the high spatial resolution burned area 
provides better emissions estimates than other inventories 
(Faulstich et al. 2022). This is, in part, because the MTBS 
product is less affected by cloud cover and provides better 
detection for small fires. The LandSat satellite overpass 
frequency is every 8 days, meaning it only collects data 
from a specific location once every 8 days. Because of this 
frequency, MTBS does not include high temporal resolution 
data that can provide information on daily fire progression. 

The Moderate Resolution Imaging Spectrometer (MODIS) 
active fire detection product (Giglio et al. 2016) provides 
high temporal resolution (i.e. daily) fire information. The 
MODIS active fire detection product comes from MODIS 
retrievals on two polar orbiting satellites that provide fire 
information for a specific location every 24 hours (Giglio 
et al. 2016). The two satellites overpass each location at 
different times, providing two measurements of the location 
per day, meaning that the MODIS active fire product can 
give information on daily fire progression. However, the 
spatial resolution is 500 m × 500 m, meaning small fires 
and prescribed burns may not be detected. 

We combined the two WFEIS burned area products to 
create a single FEI that uses high spatial and temporal 
resolution data. WFEIS was selected due to the complex 
fuel characteristics, the inclusion of both flaming and smoul
dering combustion, and the two different burned area prod
ucts available (Faulstich et al. 2022). This dataset was 
created for a domain within the western United States 
(Fig. 1) from 2007 to 2019 to support retrospective health 
studies of smoke exposure in Nevada. In this paper, results 
from 3 years with several large wildfires (2013, 2016, 2018) 
are presented. Because of the heavy reliance on remote 
sensing data, even after combing both burned area products, 
there are still missing days due to cloud cover. To address 
this, we fit a linear regression model to gap-fill the missing 
days resulting from cloud cover issues in the remote sensing 
products. The combination and interpolation methods are 
outlined below and shown in Fig. 2, and a step-by-step list of 
instructions can be found in Supplementary Material S1. 

Assigning daily fire progression to MTBS data 

To assign daily fire progression information to the high 
spatial resolution MTBS data, we assign unique fire IDs to 

each fire in the MTBS dataset. Pairing the MTBS fire infor
mation with daily MODIS fire progression data involves 
utilising the location centroid and burned area information 
provided in the MTBS dataset. We use the fire burned area 
to calculate a search radius around the fire centroid used 
only for pairing the fires from MTBS and MODIS. Since fires 
are not a perfect circle, the calculated radius is multiplied by 
1.5 to ensure that this radius captures all MODIS fire points. 
When checked using a geographical map, we found this 
method did not produce overlapping radii or assign multiple 
fire IDs to a single grid cell. After assigning a fire ID to these 
MODIS fire points, we further refine the data corresponding 
to each fire to ensure there is only one point per fire, per 
day. We use a single point per fire that includes daily burned 
area (i.e. a new fire location each day based on MODIS data) 
to input fire information into the atmospheric dispersion 
model. We aggregate data points with the same fire ID to 
accomplish this, determining a single daily location using a 
weighted spatial average based on the daily MODIS emis
sions. Utilising the amount of PM2.5 emissions, the weighted 
average emphasises points with substantial PM2.5 emissions 
on a given day when determining fire location. 

After assigning the daily fire progression, the MTBS 
burned area and PM2.5 are allocated to the corresponding 
daily MODIS points. The fire emissions or burned area total 
from MODIS is calculated based on the fire ID and compared 
with the totals per fire from MTBS. A daily percentage of the 
total per-fire emissions or burned area is assigned to each 
MODIS day. This MODIS daily percentage is then multiplied 
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Fig. 1. A map of the spatial domain used in this study. The domain is 
indicated by the red box.  
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by the total fire emissions or burned area from MTBS to 
allocate the MTBS burned area and emissions information 
daily. Now, the daily fire information from MODIS repre
sents the complete fire information reported by MTBS. After 
completing this process, MTBS burned area and emissions 
reflects the daily fire progression from MODIS. 

Resolving discrepancies 

Through this daily fire progression method, discrepancies 
between the datasets emerge, including cases where MODIS 
fails to identify fires that MTBS sensed, leading to an 
absence of daily fire progression. With its higher spatial 
resolution, MTBS detects some small fires that MODIS 
does not. In such instances, the fire duration needs to be 
determined to allocate daily emissions. To address the lack 
of fire duration provided by MTBS, we established a linear 
correlation between burned area and fire length for the 
entire spatial domain using data from other fires in the 
same year. Because the burned area for all unassigned 
MTBS fires was smaller than 25 km2, any fires larger than 
this were excluded from the linear correlation. The linear 
regression between the MODIS burned area and the fire 
length is used to infer the fire length for the unassigned 
MTBS fires based on the burned area. Additionally, some 
MODIS fires do not correspond to MTBS fires due to the 
differences in methods between the two burned area data
sets. For example, MTBS may miss fires that have low burn 
severity (Hawbaker et al. 2017). Since these fires already 
have daily progression, they are grouped by location and 
date and assigned a fire ID. The burned area and emissions 
estimates from MODIS are used to provide fire information 
for these fires that are not captured by MTBS. 

Cloud cover 

After determining the daily fire progression, we can identify 
any missing days. Nearly all fires are missing at least 1 day, 
with many missing seven or more consecutive days. Given 

that some of these gaps span weeks or months, we split any 
fires with more than seven consecutive days missing 
between sensed points into two fires. Because we primarily 
use the fire IDs to determine fuel type, inadvertently break
ing one fire into two poses no downsides. Once the long fires 
are separated, a linear interpolation can be applied to pro
vide information on missing fire days. The linear interpola
tion looks for a sequential gap in the fire progression and 
then uses the two nearest sensed points to determine the 
slope of the line for both PM2.5 and burned area. The slope 
of this line determines what the value of PM2.5 or burned 
area should be for the missing day. The location of each 
interpolated point is the average of the location of the two 
nearest sensed points. 

After completing these steps, the combined FEI dataset 
now incorporates data from both high spatial (MTBS) and 
high temporal (MODIS) resolution data sources, including 
gap-filled data to provide emissions estimates when remote 
sensing does not detect a fire. This combination provides 
daily information on fire characteristics that can be input 
into an atmospheric transport model and then used to esti
mate daily smoke exposures. 

Results 

Combining two sources of burned area information in a 
single FEI provides more information on fire emissions. To 
understand the additional information gained through the 
combination, we present comparisons of PM2.5, burned area, 
and number of fire days as estimated by each WFEIS prod
uct, the combined FEI that uses both burned area products, 
and the combined FEI with and without cloud cover 
interpolation. 

Assigning daily fire progression to MTBS data 

Using MODIS data, daily fire progression is assigned to 
MTBS fire perimeters. An example of this process is shown 

Assign Fire IDs

Assign daily
progression to MTBS 
�res not detected by

MODIS

Group unassigned
MODIS �re IDs and

assign �re ID

Cloud cover
interpolation

Export combined FEI
data

 Assign the MTBS �re
info to daily MODIS

�re progression

Use a weighted
average to determine
a single location for
each �re each day

Burned area radius
centered on WFEIS

MTBS point

WFEIS MODIS points
within radius

assigned same �re ID

WFEIS
MODIS data

WFEIS
MTBS data

Fig. 2. Flowchart of the FEI combination 
method using WFEIS MTBS and MODIS. 
WFEIS MTBS data are input in the first step, 
and the WFEIS MODIS data are input in the 
third step.   
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in Fig. 3 for the Happy Camp fire in 2014 (Kalamath National 
Forest, California, USA; 12 August–30 October 2014, 543 km2 

in burned area (National Interagency Coordination Center 
2014)). WFEIS MTBS provides only a single centroid and 
burned area for the fire, whereas WFEIS MODIS provides a 
daily fire progression. This figure shows the advantage of the 
WFEIS MODIS daily fire progression, though the WFEIS 
MODIS product has a lower spatial (1 km) resolution than 
WFEIS MTBS (30 m). The combination inventory has an 
average increase of 7% in the number of fire days per year 
over WFEIS MODIS and an average increase of 269% in the 
number of fire days over WFEIS MTBS over the 3 years 
investigated in depth (2013, 2016, 2018). Because MTBS 
only provides one date for each fire, the increase in number 
of fire days represents the daily fire progression assigned to 
each MTBS fire. The increase in the number of fire days for 
the combination inventory compared to WFEIS MODIS is 
because MTBS senses small fires that are not captured by 
the MODIS dataset. LandSat MTBS provides highly detailed 
burned area data at low temporal resolutions. The fine spatial 
resolution allows MTBS to achieve the most reliable burned 
area assessments, particularly for small fires. Consequently, 
inventories exclusively relying on MODIS data may overlook 
these smaller fires. 

Assigning a daily fire progression to MTBS data to create 
a combined FEI provides more information on emissions and 
burned area. Fig. 4 provides a visual representation of the 
new information included in the combined FEI. The low fire 
intensity days at the beginning and end of the fire needed 

the most interpolation, likely because the smaller fire inten
sity days are more susceptible to cloud cover and other 
remote sensing issues. Table 1 provides the emissions, fire 
days, and burned area information comparison for each FEI, 
including the percent increase. The combined FEI provides 
larger increases for WFEIS MODIS than WFEIS MTBS for 
both PM2.5 and burned area due to the high spatial resolu
tion of MTBS providing more fire information (e.g. on small 
fires) than the lower spatial resolution of MODIS. This com
bination enables the incorporation of daily fire progression 
captured by MODIS and the detection of small fires captured 
by MTBS into a single FEI. 

Resolving discrepancies 

For the 3 years investigated in this study, 9–14% of the 
reported MTBS data had no MODIS data assigned. This 
accounted for a small percentage (3–4%) of the annual 
burned area as well as a small percentage (1–6%) of PM2.5 
emissions. This indicates that these unassigned points are 
small fires. Though the total emissions impact over the 
course of a year may be relatively low, it is imperative to 
include the daily emissions from small fires in models to 
accurately assess acute smoke exposure. Capturing these 
daily emissions from small fires can also help with identify
ing the health effects of prescribed burns, which are primar
ily small fires. Using linear regression to assign fire length 
and evenly distribute PM2.5 and the burned area may not 
perfectly reflect real-life scenarios, but it plays a vital role in 
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Fig. 3. Fire detections for a single, large 
fire (the Happy Camp fire in 2014) from 
WFEIS MTBS and the combination FEI, 
which gets daily fire detections from 
WFEIS MODIS. The combo FEI is shown 
as circles, colour-coded by date. The dar
ker colours were sensed in earlier weeks 
of the fire, and the lighter colours were 
sensed in later weeks of the fire. Week 1 
represents the first week the fire was 
sensed and week 7 represents the last 
week the fire was sensed. WFEIS MTBS 
is represented as a single triangle. WFEIS 
MTBS only provides a single centroid and 
burned area for the fire, whereas WFEIS 
MODIS provides a daily fire progression 
for the combination FEI.   
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providing daily information on small fires that the MODIS 
dataset might overlook. 

Cloud cover 

Table 2 shows the amount of information the cloud cover 
interpolation added for 2013, 2016, and 2018. For 2013, 
2016, and 2018, the interpolation had an average increase 
of 1% for PM2.5 concentration, 5% for burned area, and 4% 
for fire days per year compared to the combined FEI without 
the cloud cover interpolation. While these increases may 
seem slight, it is crucial to note that these fire days were 

not previously captured. The cloud cover interpolation adds 
a relatively small overall percentage of information, con
firming that it predominantly accounts for mostly low- 
intensity fire days. Including low-intensity fire days in the 
analysis is crucial to ensure that the daily progression 
needed to understand acute health effects is as accurate as 
possible. 

Fig. 5 shows the daily fire progression for the 2014 
Happy Camp fire, indicating both the original FEI and inter
polated points. The low fire intensity days at the beginning 
and end of the fire required the most interpolation, likely 
because the smaller fire intensity days are more susceptible 

0e+00

2012 2016

Year
2018

Inventory Combined MODIS MTBS

2012 2016

Year
2018 2012 2016

Year
2018

2e+08

4e+08

A
nn

ua
l P

M
2.

5 
em

is
si

on
s 

(k
g)

0e+00 0

100

200

300

1e+04

2e+04

A
nn

ua
l b

ur
ne

d 
ar

ea
 (

km
2 )

N
um

be
r 

of
 a

ct
iv

e 
�r

e 
da

ys6e+08

8e+08

Fig. 4. Annual sum of PM2.5 emissions (kg), 
burned area (km2), and active fire days (days) 
for WFEIS MTBS (green), WFEIS MODIS (blue), 
and the combined FEI product (purple).   

Table 1. Comparison of PM2.5 emissions (kg), burned area (km2), and fire days (days) between the two WFEIS burned area products and the 
combined FEI.         

Combined FEI WFEIS 
MODIS 

Combined FEI 
percent increase 

(MODIS) (%) 

WFEIS MTBS Combined FEI 
percent increase 

(MTBS) (%)   

PM2.5 (kg) 

2013 4.49 × 105 2.63 × 105 71 3.28 × 1017 37 

2016 3.06 × 105 2.05 × 105 49 2.09 × 1017 47 

2018 8.10 × 105 5.63 × 105 44 6.02 × 1017 34 

Burned area (km2) 

2013 1.13 × 104 6.65 × 103 69 7.74 × 109 45 

2016 9.60 × 103 6.63 × 103 45 6.78 × 109 42 

2018 2.75 × 104 1.80 × 104 53 1.83 × 1010 51 

Fire days (days) 

2013 336 307 9 72 367 

2016 293 280 5 98 199 

2018 362 340 6 106 242 

The percentages represent the percent increase in the combined FEI as compared to the individual FEIs.  
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to cloud cover and other remote sensing issues. A NASA 
visible satellite image in Fig. 6 shows a day that did not 
need cloud cover interpolation, Fig. 7 shows a cloudy day 
during the peak of the fire that did not need cloud cover 
interpolation, and Fig. 8 shows a cloudy day near the end of 
the fire that did need cloud cover interpolation. The cloudy 
day (Fig. 8) has fewer thermal anomaly detections than the 
clear day (Fig. 6), highlighting the remote sensing issues due 
to heavy cloud cover. The cloudy day at the end of the fire 
(Fig. 8) was not captured in the fire emissions inventory and 
required interpolation. A comparison between fire radiative 
power (FRP) and MODIS detection confidence level (Fig. 9) 
reinforces the remote sensing issues shown in the satellite 

Table 2. Comparison of PM2.5 emissions (kg), burned area (km2), and 
fire days (days) for the combined FEI with and without cloud cover 
interpolation.      

Combined FEI No 
interpolation 

Cloud cover 
interpolation 

Cloud cover 
percent 

increase (%)   

PM2.5 (kg) 

2013 4.46 × 105 4.49 × 105 1 

2016 3.02 × 105 3.0 × 1055 2 

2018 8.03 × 105 8.10 × 105 1 

Burned area (km2) 

2013 7.13 × 103 7.49 × 103 5 

2016 6.89 × 103 7.37 × 103 7 

2018 1.80 × 104 1.87 × 104 4 

Fire days (days) 

2013 317 336 6 

2016 281 293 4 

2018 359 362 1   
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Fig. 5. The 2014 Happy Camp fire in California after cloud cover 
interpolation. Interpolated points show the daily PM2.5 emitted in 
teragrams (1012 g), estimated by linear regression between the nearest 
FEI points.  

Fig. 6. Visual satellite image of the Happy Camp fire on 29 August 
2014, from NASA WorldView. Orange circles represent MODIS ther
mal anomalies, showing the location of the fire (the area of interest is 
denoted by a larger red circle). This is an example of a clear day with 
no satellite remote sensing issues in the FEI.  

Fig. 7. Visual satellite imagery of the Happy Camp fire on 30 August 
2014, from NASA WorldView. Orange circles represent MODIS ther
mal anomalies, showing the location of the fire (the area of interest is 
denoted by the larger red circle). This represents a day with clouds 
where the FEI still captured thermal anomalies, likely because this was 
a high intensity fire day when the fire was at its largest.  
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visible images. MODIS detects more thermal anomalies on a 
clear day than on a cloudy day, and several of these thermal 
anomalies have a high confidence level despite relatively 

low FRP. The cloudy day thermal anomaly detections show 
a higher correlation between FRP and confidence level, 
indicating that on a cloudy day, MODIS is more confident 
in detecting larger fires than smaller fires. 

Conclusion 

Combining two sources of burned area information to create 
a single FEI captures more information on fire emissions 
than relying on a single source of burned area information. 
Further, including a temporal interpolation method to gap- 
fill missing data addresses remote sensing issues in FEIs (i.e. 
missing data due to cloud cover). These updates are crucial 
to providing daily estimates of smoke exposure for acute 
health effects studies, where missing days of fire emissions 
data can pose a significant problem. This is important 
because many FEIs used for health effects studies have 
uncertainties due to remote sensing issues, and these remote 
sensing issues cause gaps in daily fire progression informa
tion, which may result in missing smoke exposure when used 
in an acute health effects study (Black et al. 2017; Fann et al. 
2018). Many methods proposed to improve FEIs, like aircraft 
campaigns or updated remote sensing instruments, require 
significant resources (Larkin et al. 2014). The improvements 
described in this study to create the combination FEI can be 
implemented using currently available data. Our combined 
FEI dataset provides improved fire emissions inputs for mod
els that estimate human exposure to wildfire smoke for acute 
health effects studies. While there are still uncertainties in 
the combined FEI, especially related to the fuel loading and 
emissions factors, for an acute health study, it is critical to 
have a daily timeseries of smoke exposures. Therefore, this 
combined FEI is a significant improvement over other 
approaches because it provides daily fire emissions over a 
12-year period (2007–2019) using a consistent method (i.e. 
no time series differences due to FEI method changes). 
Previous research in this area reaffirms the importance of 
combining different data sources to better represent fire 
activity (Larkin et al. 2020; McClure et al. 2023). 

The data presented on FRP versus MODIS thermal anom
aly detection confidence levels show that MODIS struggles 
to sense low FRP fires on cloudy days, highlighting the 
solutions addressed by adding a high spatial resolution 
source of burned area information that is less affected by 
cloud cover issues and by adding the cloud cover interpola
tion. A comparison of results using each source of burned 
area information individually and the combined FEI shows 
that using the two sources provides more information than 
the FEI for each source of burned area individually. The 
cloud cover interpolation provides more information than 
the combined burned area inventory. It provides a consist
ent time series for use in acute health effects studies. This 
approach to addressing missing data is an important 
improvement for health effects studies. When daily smoke 

Fig. 8. Visual satellite image of the Happy Camp fire on 22 
September 2014, from NASA WorldView. Orange circles represent 
thermal anomalies sensed by the MODIS satellite, showing the loca
tion of the fire (the area of interest is denoted by a larger red circle). 
There are fewer thermal anomaly detections on this day compared to 
the previous day, which was clear. This day was not captured in the 
FEI and required interpolation. This day was near the end of the fire 
and was a lower intensity fire day.  
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Fig. 9. MODIS detection confidence level versus fire radiative 
power (FRP) in megawatts for each thermal anomaly detected for 
the Happy Camp Fire on 29 August (red) and 30 August (yellow) 2014. 
On the clear day (29 August, red), there is some correlation between 
FRP and the detection confidence level, meaning that the size and 
heat of the fire impact the confidence of the detection from MODIS.  
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exposures are missing, public health researchers may be 
inclined to drop those days from their analyses, which 
results in a reduction in statistical power and a loss of 
information about smoke days. Alternatively, public health 
researchers may decide to implement an interpolation 
approach to compensate for missing data, and these 
researchers may not have sufficient expertise in fire science 
to appropriately adapt for the missing exposure days. The 
approach we have described for creating a combined FEI 
offers a practical solution for these challenges. 

Assessing the quality of FEI data is crucial because FEIs 
serve as input for models that estimate the concentration of 
pollutants from wildfire smoke. Several studies (Roy et al. 
2007; Soja et al. 2009) acknowledge the limitations of cur
rent FEIs and propose validation methods. However, many 
of the proposed validation efforts are often in-depth studies 
and resource-intensive field campaigns. While these provide 
invaluable knowledge, these methods also have limitations 
in terms of scalability, cost effectiveness, and timeliness of 
data availability. Another major hurdle when looking to 
validate FEIs is the absence of a method to directly measure 
the emissions from a single fire (Hao and Larkin 2014; Black 
et al. 2017). The complex nature of fire behaviour makes it 
impossible to establish a robust validation dataset, so FEIs 
will continue to face uncertainties. Future work to further 
understand the relationship between MODIS confidence lev
els and fire characteristics, as well as understanding the 
issues that may arise from satellite fire detections in dense 
canopy cover would be another useful step to improve FEIs. 

The combined dataset addresses specific issues with using 
FEIs to estimate human exposure to wildfire smoke. While 
it does not solve all problems, it represents a functional 
improvement achievable with existing datasets. When 
using FEIs to study acute health effects, it is crucial to 
have a daily time series of exposure estimates that are as 
complete as possible. We show that combining two sources 
of burned area information into a single FEI and using a 
cloud cover interpolation creates an FEI dataset with more 
information on fires and no gaps in daily fire progression. 

Supplementary material 

Supplementary material is available online. 
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