
RESEARCH PAPER 
https://doi.org/10.1071/WF23182 

Characterising ignition precursors associated with high levels of 
deployment of wildland fire personnel 
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ABSTRACT 

Background. As fire seasons in the Western US intensify and lengthen, fire managers have been 
grappling with increases in simultaneous, significant incidents that compete for response 
resources and strain capacity of the current system. Aims. To address this challenge, we explore 
a key research question: what precursors are associated with ignitions that evolve into incidents 
requiring high levels of response personnel? Methods. We develop statistical models linking 
human, fire weather and fuels related factors with cumulative and peak personnel deployed. Key 
results. Our analysis generates statistically significant models for personnel deployment based on 
precursors observable at the time and place of ignition. Conclusions. We find that significant 
precursors for fire suppression resource deployment are location, fire weather, canopy cover, 
Wildland–Urban Interface category, and history of past fire. These results align partially with, but 
are distinct from, results of earlier research modelling expenditures related to suppression which 
include precursors such as total burned area which become observable only after an incident. 
Implications. Understanding factors associated with both the natural system and the human 
system of decision-making that accompany high deployment fires supports holistic risk manage-
ment given increasing simultaneity of ignitions and competition for resources for both fuel 
treatment and wildfire response.  

Keywords: Firefighters, Linear regression, Simultaneous wildfire, Suppression personnel competition, 
Wildfire management, Wildfire response personnel deployment, Wildfire suppression resource. 

Introduction 

As fire seasons in the Western US intensify and lengthen, fire managers have been 
grappling with increases in the period during which simultaneous, significant incidents 
compete for wildfire response resources which in some cases outstrip preparedness and 
strain the capacity of the current system (Podschwit et al. 2019; Podschwit and Cullen 
2020; Abatzoglou et al. 2021; Shuman et al. 2022; Cullen et al. 2023; Thompson et al. 
2023). This management challenge leads us to explore a key research question: what 
precursors on the day of ignition are associated with wildland fires that evolve into 
incidents requiring high levels of response and suppression personnel? Answering this 
question is a pivotal step in supporting risk-informed decision making in the response to 
wildland fire. Our research seeks to establish the relationship between human, fire 
weather and fuels related factors that influence wildfire danger and their impact on 
the evolution of ignitions to become significant users of fire suppression response 
personnel. This analysis supports identification of the specific characteristics and scenar-
ios, which have led ignitions to evolve into resource intensive incidents, and thus 
provides the agencies with wildland fire responsibilities information about preparedness, 
as well as proactive and reactive risk mitigation (Cullen et al. 2021). Understanding both 
the natural system and the systems of decision-making that accompany fires which 
require substantial deployments of response personnel supports holistic risk management 
in an era of increasing simultaneity of ignitions and competition for resources for both 
fuel treatment and wildfire response (Thompson et al. 2023). 
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Wildland fire danger and incidence have intensified over 
the last half-century largely as a result of three categories of 
factors: (1) human presence and actions related to land use 
(Balch et al. 2017; Radeloff et al. 2018), (2) a changing 
climate (Abatzoglou and Williams 2016; Abatzoglou et al. 
2021), and (3) fuel buildup and composition due to long 
standing fire suppression policy and due to the influence of 
climate change on species and stand composition (Haugo 
et al. 2019). Our research is targeted to identify significant 
factors associated with elevated resource use and subse-
quent increases in competition to support decision making 
about resource planning, sharing and prioritisation. 

Background and literature review 

The interagency wildland fire response system in the United 
States is managed at four levels: the incident, the local 
dispatching area, the geographic area, and the national 
level (Belval et al. 2022). The initial response to wildland 
fires is typically managed at the incident and local levels. 
Local dispatch centres are equipped with a set of standard 
response protocols used when responding to initial fire 
reports under different weather conditions. The majority 
of fires in the US (about 97%) are controlled during the 
initial response phase, when the fire is smaller than 100 or 
300 acres depending on category, by personnel dispatched 
by the local centre (Calkin et al. 2005). The fires that escape 
initial attack require extended response, which includes 
additional personnel, and some grow into large fires (gener-
ally defined as over 100 acres in timber fuels, 300 acres in 
grass and brush fuels) (St. Denis et al. 2023). Fires that 
continue to grow and require additional resources are man-
aged by Incident Management Teams (IMTs). Historically, 
the most complex fires requiring the highest levels of per-
sonnel have been managed by Type 1 and Type 2 IMTs, with 
Type 1 teams managing the most complex fires. The man-
agement of these fires can require up to thousands of people 
per day, with IMTs managing the personnel, the heavy 
ground equipment (fire engines, bulldozers), overhead sup-
port (i.e. management personnel) and sometimes aerial 
equipment (airtankers and helicopters). Depending upon 
the agency managing the fire, fire management goals and 
strategies may vary substantially. However, because wild-
land fire response is an interagency system, large fires typi-
cally utilise personnel and equipment supplied by multiple 
agencies. Because these fires can have a substantial impact 
on the capacity of the wildfire response system (Thompson 
et al. 2023), the assignment of resources to these fires is 
overseen by Geographic Area Coordination Centers. During 
times of personnel and equipment scarcity, distribution of 
personnel and equipment between Geographic Areas is man-
aged by the National Interagency Coordination Center. 

Previous research related to this topic has been focused 
largely on characterising suppression costs and expenditures 

(Gebert et al. 2007; Yoder and Gebert 2012; Hand et al. 
2014, 2016; Belval et al. 2019 and others as detailed below). 
While expenditures are related to personnel counts and 
deployments, efforts to quantify the number of personnel 
are needed in order to link suppression costs to the associated 
workforce capacity (Bayham and Yoder 2020). Workforce 
capacity is particularly relevant as funds to cover suppression 
costs are fungible, while the pool of highly skilled personnel 
needed for wildland fire suppression is both limited and non- 
fungible in the short term. Fires that have a substantially high 
demand for personnel and equipment can have a substantial 
impact on the readiness of the entire wildland fire response 
system (Thompson et al. 2023). Additionally, because these 
earlier analyses aimed to examine suppression costs while 
considering management decisions during fire incidents, 
they typically take into account both factors that would be 
observable at the time and place of ignition and also those 
that are only observable after the fact (e.g. total burned area). 
Although total burned area is certainly associated with 
resource demand for an incident, it is not observable until 
the blaze is extinguished and, additionally, there is debate in 
the literature about whether including fire size in such models 
introduces endogeneity issues (Gebert et al. 2007; Hand et al. 
2017). For these reasons our analysis of key precursors of 
ignitions that use a significant amount of personnel focuses 
on information and characteristics that are observable at the 
time and place of ignition. 

Gebert et al. (2007) developed a model to estimate 
expenditures on large USFS (US Forest Service) managed 
fires 1995–2004 (>300 acres, or >121 ha) with a goal of 
detecting extremely high cost fires, i.e. those responsible for 
1–2 standard deviations above the expected expenditure 
given other characteristics. For these exceptional fires they 
identify the importance of factors which fall outside of the 
model, for example the decision to fight fires more or less 
aggressively as a result of political factors. Yoder and Gebert 
(2012) built upon this foundation, modelling total and per 
acre fire suppression costs for large fires (>300 acres, or 
>121 ha) managed by the USFS and DOI (US Department of 
the Interior). They conclude that it is possible to develop a 
predictive model for cost/acre in the absence of specific 
burned area data, with the inclusion of influential factors 
including time (year and month), fuel type, location and 
terrain characteristics (slope, elevation and aspect). 

Hand et al. (2014) developed the Stratified Cost Index 
(SCI) based on data drawn from large fires (not deemed 
complex and >300 acres, i.e. >121 ha) in the Western 
US managed by the USFS using a spatial model based on 
final fire perimeters. The SCI supports forecasting of sup-
pression expenditures, exploration of the role of fire manag-
ers in related decisions and allows comparison of realised 
costs relative to expected costs. These comparisons open an 
opportunity to delve into the causes for such differences. In 
further work based on the same dataset, the team considered 
expenditure projection to support future budget decisions 

A. C. Cullen et al.                                                                                   International Journal of Wildland Fire 33 (2024) WF23182 

2 



(Hand et al. 2016) by comparing a model which relies solely 
on ignition point data and a model that incorporates the 
final spatial and temporal extent of the fire. They found that 
the latter model performs better due to its ability to adjust 
based on post hoc information about spread and burned 
area. This result has the potential to better support national 
level budgeting. A final iteration of this model added the 
footprint of previous fires to the variables, finding that 
previous fires may provide opportunities for suppression 
that might not otherwise exist, and thus may increase sup-
pression cost due to deployment of additional resources to 
capitalize on these new opportunities (Belval et al. 2019). 

Bayham and Yoder (2020) went a step further in model-
ling expenditures and resource allocation retrospectively 
based on a dynamic model (Arellano–Bond systems estima-
tor) and pulling in information about wildfire growth, area 
burned and home damage. They found that daily expendi-
tures and resource allocation are dynamic, with increases in 
expenditures associated with extreme fire growth potential 
of a fire and the presence of threatened homes. Gude et al. 
(2013) found that the presence of homes within 6 miles of 
an active fire increases daily suppression cost when looking 
at fires in California’s Sierra Nevada. 

Beyond cost and expenditure as metrics of resource use,  
Hand et al. (2017) consider instead the impact of IMTs 
(Incident Management Teams) on suppression personnel 
deployment numbers relative to the impact of underlying 
fire conditions. Their work focuses on Type 1 and Type 2 
IMTs assigned to fires occurring between 2007 and 2011 in 
the US. Using ‘days’ as a unit of analysis they find that when 
checking for fire and landscape characteristics, IMT assign-
ments accounted for 14% of the variation in resource allo-
cation, while teams in California were observed to be 
associated with higher levels of resource. 

Bayham et al. (2020) carried out an exploration of 
resource deployment in the Western US from 2007 to 
2013, delving into the impact of weather over the course 
of a fire on resource orders on incidents. They found that 
IMT anticipation of fire growth is influenced by expected 
weather which in turn affects resource orders, making the 
weather a primary driver of orders. They also tested other 
risk metrics such as evacuations but found little associated 
effect. 

Our objective is to model the total personnel time 
required by individual large wildland fire incidents, as 
well as the number of personnel allocated on the peak day 
of usage. We estimate these quantities solely using charac-
teristics which are observable at the time and place of 
ignition – rather than information gathered in the duration 
or at the conclusion of the fire event. We aim to support 
decision makers assessing which ignitions evolve into inci-
dents with significant demand on suppression resources 
such as personnel, equipment and leadership. The identifi-
cation of significant precursors, particularly those related to 
human and fuels factors, may inform and instigate medium 

term change in policy and management areas such as land 
use and zoning, fuels reduction and management, or agency 
interactions and leadership. Finally, while precursors 
related to fire weather or climate are only alterable on 
substantially longer time scales than those related to 
human or landscape processes, knowledge of the relative 
significance and role of these in fire danger may have an 
important influence on longer term decision contexts. 

Methodology 

We develop a framework to integrate the human, fire 
weather and fuels factors and conditions that might impact 
resource use, compile a dataset that reflects those factors, 
and then fit statistical models to estimate total and peak 
resource use for ignitions in the Western US for fire seasons 
2017–2020. As outlined above, our analysis is restricted to 
precursors known at the time and place of ignition to ensure 
relevance in support of decision-making during fire response. 
Our approach is designed to identify the drivers of personnel 
use to better inform risk management. 

Framework 

We developed a conceptual framework of the drivers of per-
sonnel use that are observable at the time of ignition (Fig. 1). 
The framework categorises the precursor variables used in our 
analysis by indicating their relationship to human, fire 
weather and/or fuel factors. This framework is intended to 

Human or lightning caused
within WUI

Canopy cover
Anderson 13 fuel model

GACC
past �re

Fire weather index

Preparedness
level (GACC and
national)

Managing
agency

suppression
difficulty

HUMAN

FIRE WEATHER

FUELS

Fig. 1. Conceptual Venn diagram framework capturing the main 
drivers of personnel use. Each circle presents a thematic category: 
human (blue), fuels (green), and fire weather (red). Specific drivers 
which are included in this analysis are placed in the appropriate 
categories within the Venn diagram. Acronyms: Geographic Area 
Coordination Center (GACC), Wildland–Urban Interface (WUI).   
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support the interpretation and application of our results to 
decision making by reflecting the extent to which human, 
ecosystem and planetary systemic behaviours influence poten-
tial drivers of resource use. The variables in the framework 
were chosen to support our multivariate regression based on 
previous research which investigated the drivers of wildland 
fire suppression costs (see section 2) and thus were hypothe-
sised to have a relationship with personnel deployment. 

Data 

Our outcome variables reflect the level of personnel use and 
deployment in the Western US for fire seasons from 2017 to 
2020 and include (1) total personnel-days on an individual 
fire incident and (2) peak personnel deployed on an individ-
ual incident on the day of peak use. These data are gathered 
from assignments archived within dispatching software, 
specifically, the Resource Ordering and Status System 
(ROSS 2017–2019) and the Interagency Resource Ordering 
Capability (ROSS/IROC (Resource Ordering and Status 
System/Interagency Resource Ordering Capability) 2022). 
Assignments are archived for all crew, equipment, overhead, 
and aerial resources ordered to a fire. Both total and peak 
personnel deployment count distributions are characterised 
by long righthand tails and thus were log-transformed in 
order to meet the assumptions required to fit a traditional 
Gaussian regression model (Fig. 2). 

Data are leveraged from multiple sources. Data from the 
European Centre for Medium-Range Weather Forecasts 
Reanalysis version 5 (ERA5 2023) support characterisation 
of fire weather conditions using information drawn from the 
Canadian Fire Weather Index (FWI) System (Van Wagner 
1987) coincident with the ignition date and the three prior 
days (see Table 1 for details). Data related to the human and 
fuels themes are pulled from the Fire Occurrence Database 
Plus (FOD Plus; Pourmohamad et al. 2023), LANDFIRE, 
IMSR, and datasets from the US Geological Survey (USGS).  
Table 1 provides an overview of each specific factor name, a 
short description of the factor, and the source from which we 
obtained the data, while summary statistics are presented in 
the Appendix 1. Specifically, the human factors we identified 
as potential drivers of resource use include the fire cause, i.e. 
human or lightning (Short 2022), and whether the ignition 
occurs within an area classified as either interface or inter-
mix WUI (Radeloff et al. 2018). Managing agency for the fire 
and the suppression difficulty index (SDI) (Pourmohamad 
et al. 2023) are part of both the human and fuels themes. 
Similarly, preparedness level (PL) on day of ignition 
(Pourmohamad et al. 2023) is part of the human and fire 
weather themes. Fuel model (Landfire 2023a) and canopy 
cover (Landfire 2023b) are both solely in the fuels category. 
The Geographic Area Coordination Center (GACC, see Fig. 3) 
with which the ignition location, and whether there was a 
fire at the ignition location in the past 10 years, are associ-
ated with all three major thematic categories. 

The sample used to fit the statistical model is composed 
of fire incidents occurring in Western GACCs occurring 
during the period 2017–2020, for which at least one 
ICS209 record exists (St. Denis et al. 2023). ICS209 records 
are created for fires that exceed 100 acres (40 ha) in timber, 
300 acres (120 ha) in grass and brush, or has a Type 1 or 2 
incident management team assigned; thus, our data only 
includes fires that were not contained by an initial response 
effort. Western GACCs include the Pacific Northwest, 
Northern California, Southern California, Rocky Mountain, 
Northern Rockies, Southwest, and Great Basin (see Fig. 3 for 
spatial boundaries.) This time window is narrowed to allow a 
focus on recent fire seasons, acknowledging that personnel 
deployment and use has changed substantially over time. 
Only individual fire incidents were included, while complexes 
were filtered out. This step was taken because complexes 
merge multiple ignition points into a single management 
unit and thus it is not possible to attribute personnel use to 
each individual ignition point. The sample was restricted to 
fires for which ground personnel or overhead personnel were 
deployed, those with only aerial personnel assigned were 
excluded. The filtering process yielded a sample of 1941 
fires available for analysis (see Fig. 4). 

Spatial locations of ignition points are displayed by year 
between 2017 and 2020 in Fig. 4. Note that we do not use 
year as a precursor in the regression analysis because the 
intensity of a particular year/season and its influence on 
resource demand and deployment is not discernable until 
the fire season has concluded (and we restrict our analysis to 
factors that are observable on the day of ignition). We 
display the data by year to give a sense of the variability 
of the timing and intensity of fire seasons experienced in the 
Western US during the temporal scope of our analysis. 

Statistical modelling approach 

To model the impact of potential drivers on personnel use, we 
use a multivariate linear regression approach, specifically 
Ordinary Least Squares (OLS), to explore the association of 
personnel use with human, fire weather and fuels factors and 
conditions at the point and time of ignition. This facilitates 
comparison with existing literature on cost drivers (e.g.  
Gebert et al. 2007; Yoder and Gebert 2012; Gude et al. 
2013; Hand et al. 2014, 2016; Belval et al. 2019; Bayham 
and Yoder 2020). Like suppression costs, the distribution of 
resource use on large fires is strictly positive and not normally 
distributed, while being characterised by a long righthand tail 
(see Fig. 2). Thus, we transformed the response variables 
(total personnel and peak personnel) using the log function 
(Ives 2015; Knief and Forstmeier 2021). There were no zeros 
or negative values in the response data, so there was no need 
for any additional modification. We considered the use of a 
generalised linear mixed model to directly account for the 
non-normality of the data within the modelling framework, 
using both a negative binomial and a Poisson response 
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distribution (see O’Hara and Kotze 2010 and St-Pierre et al. 
2018). The regression analysis was carried out using the lm 
function in R core Team with model diagnostics completed 
using the DHARMa package (Hartig 2022). We found that the 
OLS model based on log transformed data resulted in a better 
fit as gauged by diagnostic residual analysis. For additional 
checks on model robustness, we reviewed AIC (Akaike 

Information Criterion) for analytic information about model 
selection and goodness of fit. Separately we carried out a 
stepwise regression to explore further whether the theoretical 
basis for inclusion of variables had implications for statistical 
efficiency. Finally, we partitioned our dataset into a training 
set and a testing set to check for outliers with undue influence 
through residual analysis. 
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Fig. 2. Histograms for count of Total and Peak Personnel on individual fire incidents (2017–2020) in the Western US. Lefthand panels 
display raw counts, righthand panels display log-transformed counts.    
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Table 1. Descriptions and source information for precursor variables.     

Variable Description Source   

Total Personnel The number of total personnel days assigned, including ground and 
overhead but excluding aerial personnel on a fire incident.  

ROSS/IROC (Resource Ordering and Status System/ 
Interagency Resource Ordering Capability) (2022) 

Peak Personnel The number of total personnel assigned, including ground and 
overhead but excluding aerial personnel, on the day of peak 
personnel use  

ROSS/IROC (Resource Ordering and Status System/ 
Interagency Resource Ordering Capability) (2022) 

Agency Managing agency  Pourmohamad et al. (2023) 

Reference category: 

FS = US Forest Service 

DOI = US Department of the Interior 

Interagency = Multiple agencies 

State = State level agency 

GACC Geographic Area Coordination Center encompassing the point of 
ignition  

ROSS/IROC (Resource Ordering and Status System/ 
Interagency Resource Ordering Capability) (2022) 

Reference category:  

NWCC = Pacific Northwest 

ONCC = Northern California 

OSCC = Southern California 

RMCC = Rocky Mountain 

NRCC = Northern Rockies 

SWCC = Southwest 

GBCC = Great Basin 

PL Preparedness Level assigned by NIFC on the day of ignition, related 
to planning, organisational readiness, burning conditions, fire 
activity, and resource availability.  

Pourmohamad et al. (2023) 

PLs range from 1 to 5, with PL at level 4 or 5 reflecting a high level 
of deployment and competition for resources 

PL GACC = 1 if the PL for the GACC encompassing the ignition is at 
4 or 5, and = 0 otherwise. 

National PL = 1 if the PL for the nation is 4 or 5 at the time of 
ignition, and = 0 otherwise. 

Cause Cause of Ignition  Pourmohamad et al. (2023) 

Reference category: Natural + Other = Fire started naturally 
(lightning), or cause is unknown. Human = Fire caused by human 
activity or behaviour 

SDI Suppression Difficulty Index (SDI) at the point of ignition 
integrating information about topography, fuels, expected fire 
behaviour with 15 mph upslope winds and fully cured fuels, 
firefighter line production rates given fuel conditions, and 
accessibility (distance from roads/trails).  

Pourmohamad et al. (2023) 

SDI is a static variable taking a continuous value between 1 and 10, 
with higher values reflecting higher suppression difficulty. 

Fire Weather Index (FWI) Percentile in the historic FWI distribution 2001–2020 corresponding 
to the average FWI at the ignition point during a 4 day window, 
including the 3 days prior to ignition and the day of ignition. In this 
analysis the FWI serves as a proxy for potential fireline intensity 
dictated by fire weather. Note: the FWI values used in this analysis  

ERA5 (2023), https://www.ecmwf.int/en/forecasts/ 
dataset/ecmwf-reanalysis-v5  

Hersbach et al. (2020) 

Canadian Fire Weather Index (FWI) System,  Van 
Wagner (1987) 

(Continued on next page) 
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Results 

We present results of two regression models to assess relation-
ships between total personnel and peak personnel assigned to 
fire incidents and key precursors related to human, fire 
weather or fuel factors as outlined below. Table 2 presents 
the coefficients (β), associated standard errors and P-values 
relating precursors to the log-transformed outcome variables 
(i.e. log(total personnel) and log(peak personnel), as well as 
the interpreted percentage differential in expected personnel 

assignments (i.e. 100 × (1 − exp(β))). Our models for 
total personnel (F-value = 27.8) and peak personnel 
(F-value = 28.2) both explain approximately 26% of the 
variance in resource use and are statistically significant 
(P < 0.001). A separate stepwise model excluded almost 
none of the statistically non-significant variables included in 
our full model. Specifically, the stepwise regression retained 
variables representing SDI, managing agency, human versus 
lightning caused fire, vegetation categories and preparedness 
level for at least one of our two outcome variables, regardless 

Table 1. (Continued)    

Variable Description Source   

are drawn from the Fire Weather Index indicator itself from within 
the Canadian FWI system. 

Past Fire Past fire at the ignition point  Welty and Jeffries (2021) 

Reference category: No past fire or past fire more than 10 years 
prior to ignition 

https://www.sciencebase.gov/catalog/item/ 
61aa537dd34eb622f699df81 

Past Fire within 0–10 years (Y = 1) 

USGS data establish most recent past fire perimeters at point of 
ignition including wildfire and prescribed burning. 

Canopy Cover Canopy cover is assigned given the average percent cover of the 
tree canopy in a 1 mile radius around ignition point, to the midpoint 
of binned values as follows: Bucket raster cells as 10–20%, 20–30%, 
etc. for percent cover, then assign canopy cover as the value of the 
midpoint of its corresponding bucket, i.e. 10–20% = 15. For 
consistency canopy cover data are taken at the point of ignition 
for the closest year (2014) that preceded our window.  

Landfire (2023b) 

https://www.landfire.gov/cc.php 

Anderson 13 Anderson 13 fuel models for fire behaviour reflect fuel type at 
ignition point. Values are extracted from LandFire. Fuel models are 
categorised into 4 main vegetation groups, plus 3 additional groups, 
according to  Anderson (1982).  

Anderson (1982) 

Reference category: Grass https://www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf 

Slash (Y = 1)  Landfire (2023a) 

Timber (Y = 1) https://www.landfire.gov/fbfm13.php 

Shrub (Y = 1) 

Agriculture (Y = 1) 

Barren (Y = 1) 

Urban (Y = 1) 

Wildland–Urban 
Interface (WUI) 

The WUI variable reflects whether ignition occurs within the WUI, 
and in particular within an interface or intermix area.  

Carlson et al. (2022) 

0 = not within WUI https://www.sciencebase.gov/catalog/item/ 
617bfb43d34ea58c3c70038f 

1 = within interface WUI 

2 = within intermix WUI 

Intermix = at least 50% vegetation cover surrounding buildings 

Interface = buildings are within 2.4 km of a patch of vegetation at 
least 5 km2 in size that contains at least 75% vegetation 

USGS and GIS calculation of distance from ignition point to 
nearest WUI polygon, where distance = 0 implies ignition 
within WUI.   
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of P-value. Additionally, applying a stepwise approach did not 
improve observed explanatory power, i.e. R2 did not increase, 
and the AIC (Akaike Information Criterion) was approxi-
mately the same. For these reasons, and reasons of theoretical 
defensibility, we present the full models here rather than 
stepwise models or other models excluding non-significant 
variables more generally. Additionally, regression residuals 

were examined and found to be normally distributed, consist-
ent with the assumptions underlying linear regression. Finally, 
validation by partitioning the dataset into training (80%) and 
testing (20%) segments found nearly identical results to the 
full model fit we present in terms of R2, AIC, model coeffi-
cients and residuals. 

The GACC where the ignition occurred and the agency 
which manages the incident are both found to be significant 
predictors of personnel counts. Relative to the Pacific 
Northwest, ignitions in California are on average associated 
with statistically significantly higher total personnel counts 
(138% higher for Northern California and 387.9% higher for 
Southern California) while ignitions in other locations are 
associated with lower personnel counts (Rocky Mountain 
48.5% lower, Northern Rockies 65.7% lower, and Great 
Basin 31.1% lower). For peak personnel counts we see 
similar patterns with California ignitions associated with 
higher peak personnel assignments than in the Northwest 
(144.7% higher for Northern California and 340.6% higher 
for Southern California) while other locations are associated 
with lower counts on average (Rocky Mountain 35.3% lower 
and Northern Rockies 63.2% lower). Regarding managing 
agency relative to ignitions managed by the Forest Service, 
Interagency-managed ignitions are associated with on aver-
age 25.6% lower peak personnel counts. In contrast, fires 
managed by the Department of the Interior (DOI) are asso-
ciated with 34.9% higher total personnel counts and 32.5% 
higher peak personnel counts. 

We also observe statistically significant relationships 
between climatological precursors and assigned personnel 
counts. FWI observed for the 4-day window prior to, and 
including, the day of ignition as a percentile of the historic 
distribution at the point of ignition, is observed to be sig-
nificantly associated with personnel counts. Each additional 
percentile relative to the historic distribution of FWI 
(e.g. increase from 93rd percentile to 94th percentile), is 

20°N

120°W 110°W 100°W 90°W 80°W

25°N

30°N

35°N

40°N

45°N

Fig. 3. The spatial boundaries associated with 
the nine Geographic Area Coordination Centers 
(GACCs) that cover the continental United States. 
In this analysis, we did not consider fires that 
ignited within the Eastern or Southern GACCs.    
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Total personnel used

Ignition day of year

1000

25,000
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10,000

90,000

Fig. 4. Fire incidents in the sample from years 2017 through 2020. 
Each panel represents 1 year of data, while each marker represents 
one fire incident. The size of the marker reflects the total personnel 
used in each incident while the colour of the marker represents the 
day of ignition recorded in the ROSS/IROC dataset.   
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associated with on average 1.1% higher counts in total 
personnel assignments, and 0.9% higher counts for peak 
personnel, holding all other variables at their means and 
categorical variables at their reference levels. 

With regard to fuels factors, we test both canopy cover 
and fuel category. Each percent increase in canopy cover 
averaged over a 1-mile radius around the ignition point is 
associated with a statistically significant increase of 4% in 
total personnel and 1.9% in peak personnel. Turning to 
Anderson 13 categories, compared with grass as the refer-
ence category, characterisation of the ignition point as 
Shrub is associated with 26.4% higher total personnel 

assignment and 19.5% higher peak personnel assignment, 
while categorisation as Slash is associated with 85.6% lower 
peak personnel assignment. 

Fire within the past 10 years at the point of ignition is 
associated with a statistically significant lower count in 
terms of total personnel assigned (23.6% lower) and peak 
personnel assigned (18.8% lower). Finally, a WUI designa-
tion at the point of ignition is associated with a statistically 
significant increase in personnel counts relative to non-WUI. 
WUI Interface categorisation is associated with 136.1% 
higher total personnel assignment and 81.5% higher peak 
personnel assignment, while WUI intermix categorisation is 

Table 2. Regression models for total personnel and peak personnel deployment.       

Input Variables Log(Total Personnel) Log(Peak Personnel) 

β (s.e.) % β (s.e.) %   

DOI (Ref = FS) 0.299 A** (0.152) B  34.9 C 0.281** (0.122) 32.5 

Interagency −0.125 (0.147)  −11.8 −0.295** (0.117)  −25.6 

State Agency 0.069 (0.181)  7.1 0.224 (0.145)  25.1 

GACC ONCC (Ref = NWCC) 0.867*** (0.191)  138.0 0.895*** (0.152)  144.7 

GACC OSCC 1.585*** (0.174)  387.9 1.483*** (0.139)  340.6 

GACC RMCC −0.485*** (0.169)  −38.4 −0.436*** (0.135)  −35.3 

GACC NRCC −1.071*** (0.160)  −65.7 −0.999*** (0.128)  −63.2 

GACC SWCC  0.004 (0.154) 0.4 −0.193 (0.123)  −17.6 

GACC GBCC −0.372*** (0.129)  −31.1 −0.228** (0.103)  −20.4 

PL GACC = 4/5 (Y = 1) −0.056 (0.110)  −5.5 −0.011 (0.088)  −1.1 

National PL = 4/5 (Y = 1)  0.014 (0.098) 1.4 −0.104 (0.078)  −9.9 

Human Caused (Ref = Natural + Unknown) 0.007 (0.087)  0.7 0.104 (0.069)  11.0 

Suppression Difficulty Index 0.145 (0.125)  15.6 0.035 (0.100)  3.6 

Ignition FWI Percentile 0.011*** (0.002)  1.1 0.009*** (0.002)  0.9 

A13 – Agriculture (Ref = Grass) 0.116 (0.389)  12.3 0.036 (0.311)  3.7 

A13 – Barren −0.045 (0.281)  −4.4 −0.115 (0.225)  −10.9 

A13 – Shrub 0.234** (0.103)  26.4 0.178** (0.082)  19.5 

A13 – Slash −1.179 (1.019)  −69.2 −1.936** (0.814)  −85.6 

A13 – Timber 0.239* (0.133)  27.0 0.114 (0.106)  12.1 

A13 – Urban 0.026 (0.168)  2.6 0.140 (0.135)  15.0 

Past Fire w/in 10 years (Y = 1) −0.269** (0.130)  −23.6 −0.208** (0.104)  −18.8 

Canopy Cover% w/in 1 Mile 0.039*** (0.003)  4.0 0.019*** (0.003)  1.9 

WUI-Interface (Ref = Not within WUI) 0.859** (0.337)  136.1 0.596** (0.269)  81.5 

WUI-Intermix 0.371*** (0.144) 44.9  0.489*** (0.115)  63.1 

(Intercept) 4.100*** (0.278)  3.056*** (0.222)  

R2, F-value, model signif. R2 = 0.26, F(24,1916) = 27.8*** R2 = 0.26, F(24,1916) = 28.2*** 

AIC = 7694.71, BIC = 7839.56 AIC = 6823.81, BIC = 6968.65 

***P < 0.01; **P < 0.05; * P < 0.1; N = 1941. 
Aβ relating input variable with log(outcome variable). 
B(s.e. or standard error) for β. 
C%, i.e. 100*(1 − exp(β)).  
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associated with 44.9% higher total personnel assignment 
and 63.1% higher peak personnel assignment. 

Discussion 

Our analysis yields statistically significant linear regression 
models for both total personnel use and peak personnel use 
related to fire response in the Western US explaining 26% of 
observed variance and relying solely on precursors that are 
observable at the time and place of ignition. The most signif-
icant and impactful precursors are geographic location (rep-
resented by GACC), FWI, canopy cover, WUI category and a 
history of recent fire on the landscape. These results align 
partially with, but are distinct from, prior studies which (as 
mentioned above) focus on modelling expenditures related 
to suppression and include precursors such as total burned 
area which becomes observable only after an incident. 

Fire weather has a pronounced effect on fire behaviour 
and resource demand in our results. Our model includes two 
precursors representing the influence of weather. We find 
that personnel use increased significantly with FWI percent-
ile. Locally, extreme fire weather conditions concurrent with 
the ignition date have been shown to be linked with a 
variety of fire impacts including eventual fire size (Riley 
et al. 2013; Jolly et al. 2019). This result also tracks with 
several regression models estimating suppression costs that 
include energy release component or growth potential as the 
fire weather indices in the model (i.e. Gebert et al. 2007;  
Yoder and Gebert 2012; Gude et al. 2013; Hand et al. 2016;  
Belval et al. 2019; Bayham et al. 2020), as well as the Hand 
et al. (2017) findings indicating that resource use is associ-
ated with fire evolution and also with fire weather. While not 
revealing a statistically significant association with peak 
personnel use, national and GACC PL do exhibit a negative 
sign on the fitted coefficient, suggesting a reduction in peak 
deployment for ignitions which occur during periods in 
which intense resource competition at the regional and 
national scale is already being experienced. The importance 
of fire weather aligns with the impact of simultaneous 
demand across the whole response system on specific days, 
a situation which is strongly influenced by larger scale 
climate/weather anomalies (Abatzoglou et al. 2021). 

Further, these results shed light on the potential impacts 
of increasing competition for resources over time. This com-
petition is driven in part by a relatively small number of 
large fires that commandeer significant resources (Thompson 
et al. 2023). Given that future climate projections suggest an 
increase in the number of simultaneous and significant fires 
that compete for finite response and management resources 
(Podschwit and Cullen 2020; McGinnis et al. 2023), this 
work supports decision making about resource sharing, plan-
ning and prioritisation. 

Location represented by GACC is observed to be a highly 
significant precursor in the resource use models presented 

here. Resource use is significantly higher for wildfire igni-
tions in California GACCs in this analysis, in alignment with 
results reported in related research (Wei et al. 2020). This 
finding may indicate that fire response is approached differ-
ently in the California geography given the presence of CAL 
FIRE (California Department of Forestry and Fire Protection) 
operations. A distinct signal for California was similarly 
reported by Hand et al. (2017) and Hand et al. (2016). 
Interestingly, several other regions are associated with 
reduced levels of resource assignment on average, including 
Northern Rockies, Rocky Mountain and Great Basin (for total 
personnel only), even though our models are controlled for 
fire weather and the presence or absence of people and 
property through WUI categories. The presence and influ-
ence of different agencies in these regions may be driving 
some of this difference. For example, CAL FIRE is the second 
largest wildland firefighter organisation in the world with a 
mission that aligns with aggressive suppression actions, 
which often require substantial personnel and equipment. 
Likewise, approximately half of the population living in the 
WUI in the Western US resides in the state of California 
(Radeloff et al. 2018) contributing to California’s overall 
elevated risk and resource demand. 

We find that resource use is positively associated with the 
extent of canopy cover while resource use is negatively 
associated with a history of past fire (which serves to reduce 
fuel load) on the landscape. This result suggests the impor-
tance of fuel abundance and availability in contributing to 
the evolution of an incident from an ignition to a heavy use 
of personnel. We further include Anderson 13 fuel category 
as a predictor (e.g. timber, slash, shrub) despite its lack of 
statistical significance when canopy cover is controlled. The 
inclusion of both precursors, even though some fuel types 
are consistent with canopy cover while others are not, rep-
resents an acknowledgement that there may be contexts 
where both fuel type and canopy cover are important pre-
cursors for resource use. Earlier work by Gude et al. (2013) 
also considered the role of fuels in explaining variance in 
resource use, and found that the percentage of forest in a 
final fire perimeter is associated with a decrease in daily 
suppression expenditures. Gebert et al. (2007), Yoder and 
Gebert (2012), Hand et al. (2016) and Belval et al. (2019) 
also found fuels to be important. We would note that these 
previous approaches included different model outcomes 
(suppression expenditure) and examined precursors such 
as final fire perimeter known only after the incident had 
concluded. In addition, some models used a different unit of 
analysis (day) and a different precursor representing fuel 
(percentage of forest/wildland rather than canopy cover). 
All of these represent substantial differences relative to our 
analysis. 

Turning to consideration of people and property we find 
that ignition within a WUI area is associated with an 
increase in both total and peak resource use when compared 
with ignition outside of a WUI area. The presence of people 
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and property in close proximity to ignitions has been estab-
lished previously as significantly associated with personnel 
deployment, which is in alignment with our findings. For 
example, Gebert et al. (2007), Hand et al. (2016), Gude et al. 
(2013), Belval et al. (2019) and Bayham and Yoder (2020) 
find that fire proximity to homes increases expenditures and 
changes resource allocation. Interestingly we do not find SDI 
and ignition cause (human vs lightning) to be statistically 
significantly associated with resource use, although this 
result may be due to the model controlling for location 
and WUI status, both of which represent the presence or 
absence of people and property. 

We acknowledge that our models leave substantial 
unexplained variance, a result which is also consistent 
with previous related work. One possible interpretation of 
this result is that it is difficult to account for the impact of 
temporal behaviour as fires evolve. This is true whether one 
focuses on individual fire incidents as we do, or daily out-
comes such as those examined by Hand et al. (2016). We 
acknowledge that while our model focuses on total person-
nel which are aggregated across a whole fire incident, and 
also peak personnel on the day of maximum use, the evolu-
tion of fire incidents over time plays an important role in 
resource demand and deployment. 

Finally, the role of the managing agency in resource 
demand is found to have several significant associations 
with personnel deployment. Fires managed by the US 
Department of Interior are found to be associated with 
higher levels of total and peak personnel use relative to 
those managed by the US Forest Service, a result which 
aligns with the impact of agency found in models of suppres-
sion costs. By contrast, we find that interagency managed 
fires are associated with lower peak personnel deployment 
relative to those managed by the Forest Service. Examining 
this result a bit further we compared the number of total and 
peak personnel on each fire in our sample (from archived 
dispatching records) to the number of personnel recorded in 
the ICS-209s. In the ICS-209 records we found additional 
resources recorded for interagency fires beyond those which 
were included in the archived dispatching records, while US 
Forest Service fires appear to have relatively complete dis-
patching records of personnel. This discrepancy aligns with 
findings in existing literature that interagency fires appear to 
use resources that are not archived or captured by the inter-
agency wildfire dispatching system (USDA (United States 
Department of Agriculture) 2023). 

The data used in this study open several avenues of future 
research that might be developed to examine additional ques-
tions regarding personnel use and deployment. For example, 
models might be developed to examine specific personnel 
types and compared with the presented model to see what 
precursors are associated with relatively higher use of equip-
ment (i.e. engines and bulldozers) or crews. Future work 
might also investigate daily use of personnel. While the data 
compiled did not include daily observations, other datasets do 

support such analyses. Finally, future research might investi-
gate the use of tools to model nonlinear relationships. We 
leave these areas as next steps for future studies. 

Conclusions 

This research identifies the key characteristics of ignitions 
that are likely to evolve into substantial uses of personnel 
both across the life of the incident and also on the day of 
peak deployment. The most significant and impactful pre-
cursors are found to be geographic location (with California 
associated with the most substantially elevated deploy-
ments), fire weather, canopy cover, the presence of people 
and property as indicated by WUI status, and a history of 
past fire on the landscape. All these precursors are observ-
able at the time and place of ignition and in advance of 
containment or extinction of the incident. The models were 
designed using only precursor variables in order to provide 
historical context and enhanced understanding of personnel 
use on individual fires to support a wide variety of policies 
and management decisions such as staffing levels, resource 
sharing agreements, land use and zoning, and fuels reduc-
tion and management. Combining the results of this 
research with other studies such as projections of climate 
change or fuels management effects on fire behaviour allows 
managers to explore the potential impacts of these changes 
on personnel use. Finally, for precursors for which policy 
and management levels may exert influence – for example 
WUI status through zoning or history of fire on the land-
scape through prescribed burning – these results provide 
support for taking proactive steps to reduce the long-term 
risk associated with wildfire and its impacts. 

References 
Abatzoglou JT (2013) Development of gridded surface meteorological 

data for ecological applications and modelling. International Journal 
of Climatology 33, 121–131. doi:10.1002/joc.3413 

Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate 
change on wildfire across western US Forests. Proceedings of the 
National Academy of Sciences 113(42), 11770–11775. doi:10.1073/ 
pnas.1607171113 

Abatzoglou JT, Juang CS, Williams AP, Kolden CA, Westerling AL 
(2021) Increasing synchronous fire danger in forests of the western 
United States. Geophysical Research Letters 48, e2020GL091377. 
doi:10.1029/2020GL091377 

Anderson HE (1982) ‘Aids to Determining Fuel Models For Estimating 
Fire Behavior.’ (US Department of Agriculture) Available at https:// 
www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf 

Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL 
(2017) Human-started wildfires expand the fire niche across the 
United States. Proceedings of the National Academy of Sciences 
114(11), 2946–2951. doi:10.1073/pnas.1617394114 

Bayham J, Yoder JK (2020) Resource allocation under fire. Land 
Economics 96, 92–110. doi:10.3368/le.96.1.92 

Bayham J, Belval EJ, Thompson MP, Dunn C, Stonesifer CS, Calkin DE 
(2020) Weather, risk, and resource orders on large wildland fires in 
the western US. Forests 11, 169. doi:10.3390/f11020169 

Belval EJ, O’Connor CD, Thompson MP, Hand MS (2019) The role of 
previous fires in the management and expenditures of subsequent 
large wildfires. Fire 2(4), 57. doi:10.3390/fire2040057 

www.publish.csiro.au/wf                                                                           International Journal of Wildland Fire 33 (2024) WF23182 

11 

https://doi.org/10.1002/joc.3413
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1029/2020GL091377
https://www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf
https://www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf
https://doi.org/10.1073/pnas.1617394114
https://doi.org/10.3368/le.96.1.92
https://doi.org/10.3390/f11020169
https://doi.org/10.3390/fire2040057
https://www.publish.csiro.au/wf


Belval EJ, Short KC, Stonesifer CS, Calkin DE (2022) A historical perspec-
tive to inform Strategic Planning for 2020 End-of-Year Wildland Fire 
Response Efforts. Fire 5(2), 35. doi:10.3390/fire5020035 

Carlson AR, Helmers DP, Hawbaker TJ, Mockrin MH, Radeloff VC 
(2022) Wildland-urban interface maps for the conterminous U.S. 
based on 125 million building locations: U.S. Geological Survey 
data release. doi:10.5066/P94BT6Q7 

Calkin DE, Gebert KM, Jones JG, Neilson RP (2005) Forest Service large 
fire area burned and suppression expenditure trends, 1970–2002. 
Journal of Forestry 103(4), 179–183. doi:10.1093/jof/103.4.179 

Cullen AC, Axe T, Podschwit H (2021) High-severity wildfire potential – 
associating meteorology, climate, resource demand and wildfire 
activity with preparedness levels (PLs). International Journal of 
Wildland Fire 30, 30–41. doi:10.1071/WF20066 

Cullen AC, Prichard SJ, Abatzoglou JT, Dolk A, Kessenich L, Bloem S, 
Bukovsky MS, Humphrey R, McGinnis S, Skinner H, Mearns LO 
(2023) Growing convergence research: coproducing climate projec-
tions to inform proactive decisions for managing simultaneous wild-
fire risk. Risk Analysis 43, 2262–2279. doi:10.1111/risa.14113 

ERA5 (2023) ECMWF Reanalysis v5. Available at https://www.ecmwf. 
int/en/forecasts/dataset/ecmwf-reanalysis-v5 [accessed January 2023] 

Gebert KM, Calkin DE, Yoder J (2007) Estimating suppression expen-
ditures for individual large wildland fires. Western Journal of Applied 
Forestry 22, 188–196. doi:10.1093/wjaf/22.3.188 

Gude PH, Jones K, Rasker R, Greenwood MC (2013) Evidence for the 
effect of homes on wildfire suppression costs. International Journal of 
Wildland Fire 22, 537–548. doi:10.1071/WF11095 

Hand MS, Gebert KM, Liang J, Calkin DE, Thompson MP, Zhou M 
(2014) ‘Economics of Wildfire Management: The Development and 
Application of Suppression Expenditure Models.’ (Springer Briefs in 
Fire: New York, NY, USA) 

Hand MS, Thompson MP, Calkin DE (2016) Examining heterogeneity 
and wildfire management expenditures using spatially and tempo-
rally descriptive data. Journal of Forest Economics 22, 80–102. 
doi:10.1016/j.jfe.2016.01.001 

Hand M, Katuwal H, Calkin DE, Thompson MP (2017) The influence of 
incident management teams on the deployment of wildfire suppres-
sion resources. International Journal of Wildland Fire 26, 615–629. 
doi:10.1071/WF16126 

Hartig F (2022) _DHARMa: Residual Diagnostics for Hierarchical 
(Multi-Level/Mixed) Regression Models_. R package version 0.4.6. 
Available at https://CRAN.R-project.org/package=DHARMa 

Haugo RD, Kellogg BS, Cansler CA, Kolden CA, Kemp KB, Robertson JC, 
Metlen KL, Vaillant NM, Restaino CM (2019) The missing fire: quan-
tifying human exclusion of wildfire in Pacific Northwest Forests, 
USA. Ecosphere 10(4), e02702. doi:10.1002/ecs2.2702 

Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-Sabater 
J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A (2020) The 
ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological 
Society 146(730), 1999–2049. doi:10.1002/qj.3803 

Ives AR (2015) For testing the significance of regression coefficients, go 
ahead and log‐transform count data. Methods in Ecology and 
Evolution 6(7), 828–835. doi:10.1111/2041-210X.12386 

Jolly WM, Freeborn PH, Page WG, Butler BW (2019) Severe fire danger 
index: a forecastable metric to inform firefighter and community 
wildfire risk management. Fire 2(3), 47. doi:10.3390/fire2030047 

Knief U, Forstmeier W (2021) Violating the normality assumption may 
be the lesser of two evils. Behavior Research Methods 53(6), 
2576–2590. doi:10.3758/s13428-021-01587-5 

Landfire (2023a) 13 Anderson Fire Behavior Fuel Models Layer, LAN-
DFIRE 2.0.0, U.S. Department of the Interior, Geological Survey, and 
U.S. Department of Agriculture. Available at https://www.landfire. 
gov/fbfm13.php [accessed 24 January 2023] 

Landfire (2023b) Canopy Cover Layer, LANDFIRE 2.0.0, U.S. Department of 
the Interior, Geological Survey, and U.S. Department of Agriculture. 
Available at https://www.landfire.gov/cc.php [accessed 22 March 2023] 

McGinnis S, Kessenich L, Mearns L, Cullen A, Podschwit H, Bukovsky M 
(2023) Future regional increases in simultaneous large western USA 
wildfires. International Journal of Wildland Fire 32(9), 1304–1314. 
doi:10.1071/WF22107 

O’Hara RB, Kotze DJ (2010) Do not log-transform count data: do not 
log-transform count data. Methods in Ecology and Evolution 1(2), 
118–122. doi:10.1111/j.2041-210X.2010.00021.x 

Podschwit H, Cullen AC (2020) Patterns and trends in simultaneous 
wildfire activity in the Continental United States from 1984-2015. 
International Journal of Wildland Fire 29(12), 1057–1071. 
doi:10.1071/WF19150 

Podschwit HR, Larkin NK, Steel EA, Cullen A, Alvarado E (2019) Multi- 
model forecasts of very-large fire occurences during the end of the 
21st century. Climate 6(4), 100. doi:10.3390/cli6040100 

Pourmohamad Y, Abatzoglou J, Belval E, Fleishman E, Short K, Reeves 
MC, Nauslar N, Higuera PE, Henderson E, Ball S, AghaKouchak A, 
Prestemon JP, Olszewski J, Sadegh M (2024) Physical, social, and 
biological attributes for improved understanding and prediction of 
wildfires FPA-FOD-attributes dataset. Earth System Science Data 
16(6), 3045–3060. doi:10.5194/essd-16-3045-2024 

Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar- 
Massada A, Butsic V, Hawbaker TJ, Martinuzzi S, Syphard AD, 
Stewart SI (2018) Rapid growth of the US Wildland-Urban Interface 
raises wildfire risk. Proceedings of the National Academy of Sciences 
115(13), 3314–3319. doi:10.1073/pnas.1718850115 

Riley KL, Abatzoglou JT, Grenfell IC, Klene AE, Heinsch FA (2013) The 
relationship of large fire occurrence with drought and fire danger indices 
in the Western USA, 1984–2008: the role of temporal scale. International 
Journal of Wildland Fire 22(7), 894–909. doi:10.1071/WF12149 

ROSS/IROC (Resource Ordering and Status System/Interagency Resource 
Ordering Capability) (2022) Lockheed Martin Enterprise Solutions & 
Services. Available at https://famit.nwcg.gov/applications/ROSS 
[accessed 1 July 2022] 

Short KC (2022) Spatial Wildfire Occurrence Data for the United States 
1992-2020 [FPA_FOD_2022_1014 6th edition, Fort Collins, Colorado 
Forest Service Research Data Archive]. doi:10.2737/RDS-2013-0009.6 

Shuman JK, Balch JK, Barnes RT, Higuera PE, Roos CI, Schwilk DW, 
Stavros EN, Banerjee T, Bela MM, Bendix J, Bertolino S, Bililign S, 
Bladon KD, Brando P, Breidenthal RE, Buma B, Calhoun D, Carvalho 
LMV, Cattau ME, Cawley KM, Chandra S, Chipman ML, Cobian-Iñiguez 
J, Conlisk E, Coop JD, Cullen A, Davis KT, Dayalu A, De Sales F, Dolman 
M, Ellsworth LM, Franklin S, Guiterman CH, Hamilton M, Hanan EJ, 
Hansen WD, Hantson S, Harvey BJ, Holz A, Huang T, Hurteau MD, 
Ilangakoon NT, Jennings M, Jones C, Klimaszewski-Patterson A, Kobziar 
LN, Kominoski J, Kosovic B, Krawchuk MA, Laris P, Leonard J, Loria- 
Salazar SM, Lucash M, Mahmoud H, Margolis E, Maxwell T, McCarty JL, 
McWethy DB, Meyer RS, Miesel JR, Moser WK, Nagy RC, Niyogi D, 
Palmer HM, Pellegrini A, Poulter B, Robertson K, Rocha AV, Sadegh M, 
Santos F, Scordo F, Sexton JO, Sharma AS, Smith AMS, Soja AJ, Still C, 
Swetnam T, Syphard AD, Tingley MW, Tohidi A, Trugman AT, Turetsky 
M, Varner JM, Wang Y, Whitman T, Yelenik S, Zhang X (2022) 
Reimagine fire science for the Anthropocene. PNAS Nexus 1(3), 115. 
doi:10.1093/pnasnexus/pgac115 

St. Denis LA, Short KC, McConnell K, Cook MC, Mietkiewicz NP, 
Buckland M, Balch JK (2023) All-hazards dataset mined from the 
US National Incident Management System 1999–2020. Scientific Data 
10, 112. doi:10.1038/s41597-023-01955-0 

St-Pierre AP, Shikon V, Schneider DC (2018) Count data in 
biology—data transformation or model reformation? Ecology and 
Evolution 8(6), 3077–3085. doi:10.1002/ece3.3807 

Thompson MP, Belval EJ, Bayham J, Calkin DE, Stonesifer CS, Flores D 
(2023) Wildfire response: a system on the brink. Journal of Forestry 
121(2), 121–124. doi:10.1093/jofore/fvac042 

USDA (United States Department of Agriculture) (2023) On fire: The 
report of the Wildland Fire Mitigation and Management Commission. 
Available at https://www.preventionweb.net/publication/fire-report- 
wildland-fire-mitigation-and-management-commission 

Van Wagner CE (1987) Development and structure of the Canadian 
forest fire weather index system. Forestry Technical Report. 
(Canadian Forest Service: Ottawa, Canada) 

Wei Y, Thompson MP, Belval EJ, Calkin DE, Bayham J (2020) 
Understand daily fire suppression resource ordering and assignment 
patterns by unsupervised learning. Machine Learning and Knowledge 
Extraction 3(1), 14–33. doi:10.3390/make3010002 

Welty JL, Jeffries MI (2021) Combined wildland fire datasets for the 
United States and certain territories, 1800s-Present: U.S. Geological 
Survey data release. doi:10.5066/P9ZXGFY3 

Yoder J, Gebert K (2012) An econometric model for ex ante prediction 
of wildfire suppression costs. Journal of Forest Economics 18, 76–89. 
doi:10.1016/j.jfe.2011.10.003 

A. C. Cullen et al.                                                                                   International Journal of Wildland Fire 33 (2024) WF23182 

12 

https://doi.org/10.3390/fire5020035
https://doi.org/10.5066/P94BT6Q7
https://doi.org/10.1093/jof/103.4.179
https://doi.org/10.1071/WF20066
https://doi.org/10.1111/risa.14113
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://doi.org/10.1093/wjaf/22.3.188
https://doi.org/10.1071/WF11095
https://doi.org/10.1016/j.jfe.2016.01.001
https://doi.org/10.1071/WF16126
https://CRAN.R-project.org/package=HARMa
https://doi.org/10.1002/ecs2.2702
https://doi.org/10.1002/qj.3803
https://doi.org/10.1111/2041-210X.12386
https://doi.org/10.3390/fire2030047
https://doi.org/10.3758/s13428-021-01587-5
https://www.landfire.gov/fbfm13.php
https://www.landfire.gov/fbfm13.php
https://www.landfire.gov/cc.php
https://doi.org/10.1071/WF22107
https://doi.org/10.1111/j.2041-210X.2010.00021.x
https://doi.org/10.1071/WF19150
https://doi.org/10.3390/cli6040100
https://doi.org/10.5194/essd-16-3045-2024
https://doi.org/10.1073/pnas.1718850115
https://doi.org/10.1071/WF12149
https://famit.nwcg.gov/applications/ROSS
https://doi.org/10.2737/RDS-2013-0009.6
https://doi.org/10.1093/pnasnexus/pgac115
https://doi.org/10.1038/s41597-023-01955-0
https://doi.org/10.1002/ece3.3807
https://doi.org/10.1093/jofore/fvac042
https://www.preventionweb.net/publication/fire-report-wildland-fire-mitigation-and-management-commission
https://www.preventionweb.net/publication/fire-report-wildland-fire-mitigation-and-management-commission
https://doi.org/10.3390/make3010002
https://doi.org/10.5066/P9ZXGFY3
https://doi.org/10.1016/j.jfe.2011.10.003


Data availability. The data used in this analysis were accessed through a Data Use Agreement between University of Washington and the US Forest Service 
(22-JV-11221636-141), from the datasets presented in Pourmohamad et al. (2024), https://doi.org/10.5194/essd-16-3045-2024 and from ERA5 (2023), https://www. 
ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. 

Conflicts of interest. The authors declare no conflicts of interest. 

Declaration of funding. The authors gratefully acknowledge NSF’s Growing Convergence Research Program (Award Number 2019762), for generous support 
of this work. 

Acknowledgements. The authors wish to acknowledge our Data Use Agreement – a Joint Venture agreement between the University of Washington and 
the US Forest Service Rocky Mountain Research Station 22-JV-11221636-141. In addition, the authors gratefully acknowledge the NSF Growing Convergence 
Research Program (Award Number 2019762), for generous support of this work. The findings and conclusions in this report are those of the author(s) and 
should not be construed to represent any official USDA or U.S. Government determination or policy. 

Author contributions. A. C. C.: Conceptualisation, Methodology, Investigation, Resources, Writing – Original Draft, Writing – Review and Editing, 
Supervision, Project Administration, Funding Acquisition. B. R. G.: Methodology, Software, Validation, Analysis, Data Curation, and Review and Editing. E. J. 
B.: Conceptualisation, Methodology, Investigation, Data curation, Writing – Review & Editing. J. T. A.: Data Curation, and Review and Editing. 

Author affiliations 
AEvans School of Public Policy and Governance, University of Washington, Seattle, WA 98195-3055, USA. 
BWA Department of Ecology, Lacey, WA 98503, USA. 
CUSDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO 80526, USA. 
DSchool of Engineering, University of California Merced, Merced, CA 95343, USA.  

Appendix 1.   

Summary statistics for precursor input variables        

Variable Mean s.d. Median Min Max   

Total Personnel 1661 5284.56 277 1 90598 

Peak Personnel 180.9 363.07 65 1 4832 

FWI Percentile 82.54 13.27 86 12 99 

SDI 0.30 0.36 0.16 0 2.59 

Canopy Cover 12.24 16.52 3.06 0 74.88 

Anderson 13 Count %    

Grass 808 42    

Agriculture 21 1    

Barren 41 2    

Shrub 504 26    

Slash 3 0    

Timber 393 20    

Urban 171 9    

Total 1941     

GACC Count %    

OR-NWC 294 15    

CA-ONCC 134 7    

CA-OSCC 193 10    

CO-RMC 178 9    

MT-NRC 217 11    

NM-SWC 307 16    

UT-GBC 618 32    

Total 1941     

(Continued on next page) 
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Variable Mean s.d. Median Min Max   

Past Fire Count %    

No Past Fire 1729 89    

Fire Within Past 10 Years 212 11    

Total 1941     

Within WUI Count %    

Not WUI 1714 88    

interface 31 2    

intermix 196 10    

Total 1941     

Agency Count %    

FS 221 11    

DOI 834 43    

IA 664 34    

ST 222 11    

Total 1941     

Cause Count %    

Natural or Other 1194 62    

Human 747 38    

Total 1941     

PL GACC High (4/5) Count %    

0 1506 78    

1 435 22    

Total 1941     

PL National High (4/5) Count %    

0 1143 59    

1 798 41    

Total 1941          
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