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ABSTRACT 

Background. Characterisation of fuel consumption provides critical insights into fire behaviour, 
effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an 
opportunity to generate consumption estimates in coordination with other research efforts. 
Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser 
scanning (ALS) and ground measurements and to test the spatial transferability of the ALS- 
derived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and 
estimated consumption from pre- and post-fire differences. We used cross-validation to assess 
RF model performance and test spatial transferability. Key results. Consumption estimates for 
overstory fuels were more precise and accurate than for subcanopy fuels. Transferring RF models 
to provide consumption estimates in areas without ground training data resulted in loss of 
precision and accuracy. Conclusions. Fuel consumption maps were produced and are available 
for researchers who collected coincident fire behaviour, effects, and emissions data. The 
precision and accuracy of these data vary by fuel type. Transferability of the models to novel 
areas depends on the user’s tolerance for error. Implications. This study fills a critical need in the 
broader set of research efforts linking fire behaviour, effects, and emissions.  

Keywords: airborne laser scanning (ALS), emission source, FASMEE, fire, Fishlake National Forest, 
fuel beds, fuel consumption, Monroe Mountain, prescribed fire, stand-replacing. 

Introduction 

Characterisation of the structure and arrangement of combustible biomass on the land-
scape provides important insight into fire behaviour, effects, and emissions (Ottmar 
2014; Van Der Werf et al. 2017; Prichard et al. 2019). These materials, commonly 
referred to as fuel, are often subdivided into categories such as fuel beds, which represent 
materials with specific physical characteristics leading to differing fire behaviour (Ottmar 
et al. 2007; Riccardi et al. 2007; Keane et al. 2013). The three-dimensional nature of 
fuels, collectively and as individual fuel beds, suggests the importance of spatially 
explicit methods of quantification (Hudak et al. 2020; Taneja et al. 2021). Airborne 
laser scanning (ALS) data fit this need, being able to capture both the vertical and 
horizontal distribution of fuel across a landscape (Chuvieco et al. 2020). 

Empirical models using ALS data trained with in-situ measurements of fuel load 
(i.e. the mass of fuel per area [Mg ha−1]) have been shown effective at quantifying 
canopy fuel load (e.g. Andersen et al. 2005; Skowronski et al. 2011; Mauro et al. 2021). 
These types of models also have demonstrated utility for estimating loading of subcanopy 
surface fuels (e.g. Price and Gordon 2016; Stefanidou et al. 2020; Alonso-Rego et al. 
2021; Mauro et al. 2021), despite lower accuracies due to canopy occlusion and the 
inherently high heterogeneity of fuels (Bright et al. 2022). Furthermore, analysis of 
multitemporal ALS (i.e. the use of two or more ALS datasets across time) has demon-
strated effectiveness for estimating fuel consumption in the canopy and subcanopy 
(McCarley et al. 2020, 2022; Bright et al. 2022). 
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Due to the interrelated nature of fuel consumption, fire 
behaviour, heat release, plume dynamics, and smoke chem-
istry, there is a need for large scale interdisciplinary research 
endeavours to understand complex relationships, employ 
new technology, and make new discoveries (Peterson and 
Hardy 2016; Prichard et al. 2019). To meet this need, coor-
dinated research efforts were conducted as part of the Fire 
and Smoke Model Evaluation Experiment (FASMEE) on five 
stand-replacing prescribed fires on the Fishlake National 
Forest in central Utah, USA (Prichard et al. 2019; Ottmar 
et al. 2021). Pre- and post-fire ALS data were acquired along 
with pre- and post-fire fuel load measurements on the 
ground, thereby providing the measurement data needed to 
generate spatially explicit estimates of fuel consumption. 
These can be used to understand relationships between fuel 
consumption and measurements of fire behaviour, heat 
release, plume dynamics, and smoke composition related to 
FASMEE. Users of these data may also be interested in the 
spatial transferability of the models to other areas of similar 
forest type where ALS data are available, but associated plot 
data are not. Therefore, in this study, we (1) estimate fuel 
consumption at five prescribed fires and (2) test the spatial 
transferability of the ALS-derived fuel models to estimate 
fuel consumption by separating the plot data into training 
and validation sets. 

Materials and methods 

Study area 

Stand-replacement fires are operationally prescribed on sub-
alpine forests in the Fishlake National Forest, with a primary 
objective of removing older beetle-killed or encroaching 
younger conifers and reestablishing quaking aspen (Populus 
tremuloides). Five prescribed fires in 2017–2020 provided 
FASMEE researchers with opportunities to collect measure-
ments on fuels, fire behaviour, heat release, plume processes, 
smoke emissions, and fire effects on vegetation and soil 
(Ottmar et al. 2021). The main FASMEE burn units (Fig. 1) 
were the Manning Creek Unit (MCU) burned on 20 June 
2019, the Langdon Mountain Unit (LMU) burned on 7 
November 2019, and the Annabella Reservoir Unit (ARU) 
burned on 5 November 2020. Two additional prescribed burns 
were conducted adjacent and prior to (October 2017 and 21 
November 2018) the MCU burn to act as firebreaks, referred to 
hereafter as Blackline (BL) units (i.e. BL2017 and BL2018;  
Fig. 1). Fuel moisture on the day of burning was much higher 
at ARU than all other units due to snow (~35% for 1- and 
10-h fuels). LMU had the lowest fuel moisture (~10% for 
1- and 10-h fuels; MCU: ~15%). See DRIScience (2020) for 
an overview of the FASMEE project and video footage from 
within the MCU as an example of fire behaviour. 

Elevations ranged from 2449 m at MCU to 3212 m at 
ARU, with a mean elevation of 2908 m across all units. 
The burn units were mostly forested with quaking aspen, 

sub-alpine fir (Abies lasiocarpa), and Engelmann spruce 
(Picea engelmannii), with open areas of sagebrush 
(Artemisia sp.) acting as natural firebreaks on the unit 
edges. None of the burn units had experienced fire for 
over 150 years (Linda Chappell, personal communication). 

Field data 

Between 2016 and 2021, 61 plots were sampled twice 
(i.e. pre and post-fire) in MCU (n = 20), LMU (n = 10), 
ARU (n = 20), BL2017 (n = 6), and BL2018 (n = 5) by the 
Fire and Environmental Research Applications Team of the 
USDA Forest Service (Fig. 1). Plots were divided between 
seven sampling areas (5–20 plots per area) and systemati-
cally arranged on a grid within each sampling area. These 
sampling areas were distributed across the three main burn 
units and two blackline units to represent the range of forest 
types (Ottmar et al. 2021). Each plot was defined by a centre 
point geolocated using a Javad Triumph-2 differential GPS 
(Javad GNSS, Inc., San Jose, CA). To estimate litter and duff 
fuel loads, we measured litter and duff depths at eight points 
per plot, computed an average depth for each material, then 
multiplied it by published material-specific fuel bed density 
values (Prichard et al. 2017). Coarse (100- and 1000-h) down 
woody debris (DWD) was calculated following Brown et al. 
(1982) using measurements along three 10 m transects 
extending radially from plot centre, based on a single random 
azimuth then spaced equally 120° apart. Each plot had two 
nested 1 m2 clip plots placed 5 m from plot centre, oriented at 
0° (north) and 180° (south). The northern clip plot was used 
to collect pre-fire fuels and the southern for post-fire fuels. 
Herbaceous fuels, shrubs, and seedlings were clipped (destruc-
tively sampled) then oven-dried and weighed to obtain fuel 
loading, while fine DWD (1- and 10-h) were collected 
(destructively sampled) within one quadrant (0.25 m2) of 
the clip plot. For canopy fuel, we recorded species, status 
(live/dead), and measured the DBH of all trees (>12 cm 
DBH) within an 8 m radius from plot centre. Additionally, 
total height, height to live crown, and canopy base height 
were measured for a subset of live trees. Saplings (≤12 cm 
DBH and >1.37 m tall) were tallied within a 5.6 m radius and 
an average sapling DBH was used. We calculated fuel load for 
trees (i.e. boles, snags, and crown material), saplings, and 
available canopy fuel (ACF) (i.e. foliage plus 50% of fine 
branches) using the Fire and Fuels Extension of the Forest 
Vegetation Simulator (Reinhardt and Crookston 2003). 
Additional details on field data collected and plot design 
can be found in Ottmar et al. (2021). 

ALS data 

Pre-fire ALS data were collected by Digital Mapping Inc. 
using an Optech ALTM 167 GEMINI sensor between 27 
August and 11 September 2016 at ≥8 pulses/m2 and with 
60% overlap. Post-fire ALS data were collected by Technical 
Applications and Consulting, LLC using an Optech Galaxy 
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T500 sensor. Post-fire ALS data for MCU, LMU, BL2017, and 
BL2018 were collected on 30 September 2020 at ≥8 pulses/ 
m2 and with 80% overlap, while data for ARU were 
collected on 15 June 2021 at ≥7 pulses/m2 and with 
100% overlap. Using LAStools (Isenburg 2013), we normal-
ised the height of the ALS point clouds, then calculated 
statistical metrics (e.g. height percentiles, canopy cover, 
point density in height strata; Supplementary Table S1) 
within 8 m circles at each plot (i.e. the area within which 
trees were tallied) from both the pre- and post-fire ALS 
acquisitions. The same statistical metrics were calculated 
for 10 m raster grids across each ALS acquisition. 

Data analysis 

We trained RF models to predict fuel loading of canopy 
(trees and saplings), shrub/seedling, herbaceous, DWD, lit-
ter, duff, total fuel, subcanopy fuel (shrub/seedling, herba-
ceous, DWD, litter, and duff), and ACF using the combined 

set of pre- and post-fire field data as the independent obser-
vations and the corresponding pre- and post-fire ALS statis-
tical metrics within the 8 m circles of each plot as the 
predictor variables. We used an iterative variable selection 
process to reduce the number of final predictor variables 
(McCarley et al. 2020, 2022; Supplementary Table S1). To 
estimate fuel consumption across the burn units, we pre-
dicted pre- and post-fire fuel load using the RF models to 
10 m rasters, then differenced them. 

To assess the quality of the RF fuel loading models, we 
evaluated variance explained (i.e. pseudo-R2) reported in 
the RF outputs. We validated consumption estimates in 
three ways: (1) comparing estimated fuel consumption to 
observed fuel consumption at all the plots; (2) performing 
3-fold cross-validation, where data were selected for each 
fold at random, irrespective of burn unit; and (3) performing 
a geographic 3-fold cross-validation, where the training and 
validation plot subsets were separated between the burn 
units of unequal sample size (Fig. 1). Fit statistics of root 

112°5¢W 112°W 111°55¢W 111°50¢W 111°45¢W 111°40¢W 111°35¢W 111°30¢W

38°25¢N

38°30¢N0 0.5 1 2 km

Burn unit
perimeter

Blackline
2017

Blackline
2018

Plot
locations

38°35¢N

38°40¢N

38°45¢N

(a)

(b)

(c)

Fig. 1. Overview of the three burn units on Monroe Mountain in the Fishlake National Forest south of Richfield, UT: 
(a) Annabella Reservoir (ARU), (b) Manning Creek (MCU) and adjacent blackline units (burned in 2017 on the northeast edge 
of the MCU and in 2018 on the southern edge of the MCU), (c) Langdon Mountain (LMU). Plots (n = 61) were clustered into seven 
sampling areas.    
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mean squared error (RMSE) and %RMSE (i.e. RMSE divided 
by the mean of observed values) and mean bias estimate 
(MBE) (i.e. the mean of predicted minus observed values) 
and %MBE (i.e. MBE divided by the mean of observed 
values) were used to assess the models and make compari-
sons. The first approach tested how well the predictions 
matched the observations as a general model validation. 
The random 3-fold cross-validation provided a more robust 
validation by withholding independent plots, such that any 
spatial dependence between training and validation plots 
was lessened. The geographic 3-fold cross-validation tested 
spatial transferability, or the ability of the models fit from 
data in only two burn units to provide accurate predictions 
in the third burn unit situated well beyond the range of 
spatial dependence. We expected that the: (1) general model 
validation would produce the best fit statistics, but be poten-
tially overfit; (2) random 3-fold cross-validation would pro-
vide the most defensible quality assessment for consumption 
estimates derived from a model simultaneously predicting 
fuel loads in these three FASMEE burn units; and (3) geo-
graphic 3-fold cross-validation would provide the most 
defensible quality assessment for consumption estimates 
derived at other fires prescribed elsewhere across Monroe 
Mountain. 

Results 

We quantified fuel consumption for canopy, shrub/seedling, 
herbaceous, DWD, litter, duff, total fuel, subcanopy fuel, 
and ACF. Consumption maps of total fuel are shown for 
each burn unit in Fig. 2. All consumption and fuel loading 
data for each burn unit are available on the WIFIRE 

Commons archive site: https://wifire-data.sdsc.edu/dataset/ 
fuel-load-and-consumption-for-the-2017-2020-monroe-moun-
tain-prescribed-fires. 

The RF models with the highest variance explained 
(63.5–76.0%; Table 1) were those for the overstory (canopy 
fuel, ACF, and total fuel). Models for shrub/seedling and 
herbaceous fuels performed poorly, having 7.0 and 10.4% 
variance explained. Due to this, we omitted these from the 
results except if included in the aggregated fuel response 
variables (i.e. subcanopy fuel and total fuel). Shrub/seedling 
and herbaceous fuels comprised 3.3 and 0.2% of subcanopy 
fuels, respectively, and 1.1 and 0.01% of total fuels. The 
percentage variance explained for the other subcanopy fuels 
ranged from 25.6 to 42.9% (Table 1). 

The models for canopy fuel, total fuel, and ACF produced 
the lowest relative RMSE values (42.9–78.3%) and lowest 
absolute MBE values (i.e. closest to zero; −18.3 to 29.8%;  
Table 1) when comparing estimated and observed consump-
tion for the entire set of plots. MBE values were consistently 
negative, indicating an underprediction bias. RMSE and 
MBE statistics from the random 3-fold cross-validation 
were better than using the entire set of plots, with 12.4% 
lower %RMSE and 4.9% lower %MBE on average across the 
fuel types (Table 1). Regarding the geographic cross- 
validation, to see how well the models could predict outside 
of the area they were trained in, all models had higher % 
RMSE (11.0% on average) and %MBE values (13.9% on 
average; Table 1). On average, the %RMSE were 23.5% 
higher and %MBE were 18.8% higher than for the random 
3-fold cross-validation. This indicated RF models for all fuel 
types had greater error in predicting consumption when 
applied to a new area. However, canopy fuel, total fuel, 
and ACF tended to perform better in comparison to the 
other fuel types. 

Discussion 

Fuel consumption is intrinsically related to fire behaviour, 
heat release, plume dynamics, and smoke chemistry (Ottmar 
2014; Van Der Werf et al. 2017; Prichard et al. 2019). At 
MCU, LMU, and/or ARU, data were collected on fire beha-
viour using in-situ sensors, plume dynamics using Doppler 
lidar, smoke composition and dispersion from UAS, aspen 
regeneration, and soil heating (Ottmar et al. 2021; Kobziar 
et al. 2024; Lareau et al. 2024). The intersection of these data 
provides a valuable nexus for advancing fire science toward 
understanding multiple disciplines cohesively. Within this 
context, it is important to understand the quality and the 
limitations of the fuel consumption estimates we developed. 

Fuel consumption 

Canopy fuel variables (i.e. canopy fuel, total fuel, and ACF) 
had the best model performance (highest pseudo-R2) and 

(a)

(b) (c)

0

0 110 220 330

0.5 1 2 km

Burn unit perimeter

Blackline 2017

Blackline 2018

Fuel consumption (Mg/ha)

Fig. 2. Mapped estimates (10 m resolution) of total fuel consumed 
at the (a) Manning Creek (MCU) and adjacent blackline units, 
(b) Langdon Mountain (LMU) and (c) Annabella Reservoir (ARU) burn 
units using ALS-derived predictions.   
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were most precise (lowest %RMSE) and accurate (lowest 
absolute %MBE) upon validation (Table 1). Others have 
also demonstrated that ALS data is less accurate when 
modelling subcanopy variables due to canopy occlusion 
and inability to directly capture the depth of some variables 
such as litter and duff (Bright et al. 2022; McCarley et al. 
2022). Our models for DWD, litter, duff, and subcanopy fuel 
explained between 25.6 and 42.9% of variance. A review of 
literature on predicting subcanopy fuels from ALS data by  
Bright et al. (2022) found the range of variance explained to 
be 14–71%, suggesting our results are typical. Our model 
explained between 64.9 and 76.0% variance in total fuel, 
ACF, and canopy fuel. This is also typical in literature, with 
others demonstrating better fitting models of canopy than 
subcanopy fuels (Price and Gordon 2016; McCarley et al. 
2020; Mauro et al. 2021). It follows that the models for 
subcanopy fuels performed worse when validating fuel con-
sumption (Table 1). Therefore, users of the data we gener-
ated should know that there are potentially greater errors in 
the fuel consumption estimates for DWD, litter, duff, and 
subcanopy fuel. 

For maximising accuracy and incorporating subcanopy 
fuels, estimates of total fuel were best. In validating total 
fuel consumption, it had the second lowest %RMSE and the 
third lowest absolute %MBE, behind canopy fuel and ACF 
(Table 1). The total fuel model likely had higher relative 
accuracy because of the stronger statistical relationship 
between ALS data and overstory canopy, as discussed previ-
ously, and the ecological relationship between the canopy 
and subcanopy, which has been demonstrated by others 
(e.g. Lydersen et al. 2015; Cansler et al. 2019). 

Spatial transferability 

In comparing consumption modelled from the full set of 
plots with the geographic cross-validation, the lower 
RMSE and MBE indicated that spatial transferability would 
result in loss of precision and accuracy. That is, parameters 
from RF models trained in a certain area are likely to result 
in poorer predictions when applied to a novel area without 
coincident fuel measurements on the ground. However, the 
extent to which model performance suffers was demon-
strated to vary by fuel component (Table 1). There may be 
cases where some loss of predictive accuracy is an accept-
able trade-off to acquiring field data. 

A notable complication in our results is that the sample 
design of the plots in our study was opportunistic from a 
safety and logistics standpoint but not well-designed to 
capture the range of forest conditions in each unit. The 
clustered design (Fig. 1) introduced spatial autocorrelation, 
limiting the true independence of the observations. When 
we removed plots from the models at random, the statistics 
for consumption were better than if all plots for a given burn 
unit were removed. Such a problem may lead to worse out- 
of-sample predictions when observation independence is Ta
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further reduced, as we observed in our geographic cross- 
validation. In this respect, our results are not a robust test of 
spatial transferability, but they emphasise the need for an 
unbiased and spatially representative sampling design, in 
which (1) sample plot locations are well distributed spatially 
and (2) each fuel condition is sampled in proportion to its 
occurrence on the landscape (Goodbody et al. 2023), in future 
efforts to develop generalised models of fuel consumption. 

Fekety et al. (2018) performed a similar geographic 
cross-validation analysis to test the spatial transferability 
of lidar-trained RF models to predict basal area and stem 
density. They concluded that making RF model predictions 
onto a novel area without training data and within the same 
ecoregion was feasible but would likely result in greater 
errors than if training data were added to the novel area.  
Mauro et al. (2021) explored the potential for spatial trans-
ferability across multiple ALS datasets, finding that eco-
system differences and modelling techniques affected 
performance the most. Tompalski et al. (2019) showed aver-
age RMSE and MBE increased by as much as 29.31 and 
22.04%, respectively, when ALS models were transferred 
to a new area. Similarly, we found an average increase in 
RMSE of 11.0% and MBE of 13.9%. These findings demon-
strate the limitations of spatial transferability in developing 
generalised models and reinforce the importance of captur-
ing the range of biophysical conditions in the training data 
to achieve the most accurate predictions. 

Conclusions 

We produced fuel consumption maps on three stand- 
replacing prescribed fires and two blackline units for can-
opy, DWD, litter, duff, total fuel, subcanopy fuel, and ACF. 
These data are available on WIFIRE Commons (see Data 
Availability Statement) and can be particularly useful to 
researchers who collected coincident fire behaviour, effects, 
and emissions data on the same fires. The precision and 
accuracy of these data vary, with canopy, total fuel, and 
ACF demonstrating the best performance. However, other 
predicted variables may be useful as they are the best avail-
able data for fuel consumption on these prescribed fires. 
Given ongoing FASMEE interest in future stand-replacing 
prescribed fires on the Fishlake National Forest, these mod-
els may be used to predict fuel consumption where pre- and 
post-fire ALS data are available, but ground data are not. 
Our results suggest reduced precision and accuracy from a 
spatially transferred model, so the tolerance for error in this 
approach should be considered against the cost of acquiring 
additional ground data for model refinement. 

Supplementary material 

Supplementary material is available online. 
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