
REVIEW

Leveraging the next generation of spaceborne Earth
observations for fuel monitoring and wildland fire
management

Rodrigo V. Leite1,2,3 , Cibele Amaral3,4,5, Christopher S. R. Neigh2, Diogo N. Cosenza3 ,
Carine Klauberg6, Andrew T. Hudak7, Luiz Arag~ao8,9, Douglas C. Morton2, Shane Coffield2,10,
Tempest McCabe2,10 & Carlos A. Silva6

1Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA
2Biospheric Sciences Laboratory, Code 618, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA
3Department of Forest Engineering, Federal University of Vic�osa, Vic�osa, Minas Gerais, 36570900, Brazil
4Earth Lab, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, 80303, USA
5Environmental Data Science Innovation & Inclusion Lab (ESIIL), University of Colorado Boulder, Boulder, Colorado, 80303, USA
6Forest Biometrics, Artificial Intelligence and Remote Sensing Laboratory (Silva lab), School of Forest, Fisheries, and Geomatics Sciences,

University of Florida, Gainesville, Florida, 32611, USA
7Forestry Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, 1221 South Main Street, Moscow, Idaho, 83843, USA
8Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), S~ao Jos�e dos Campos, Brazil
9Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
10Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20740, USA

Keywords

Earth observation, fuel load, fuel

management, fuel moisture, lidar, wildfire

Correspondence

Rodrigo V. Leite, NASA Postdoctoral Program

Fellow, Goddard Space Flight Center,

Greenbelt, MD 20771, USA. Tel: 301 614

5911; E-mail: rodrigo.vieiraleite@nasa.gov

Editor: Prof. Mat Disney

Associate Editor: Prof. Jin Wu

Received: 15 January 2024; Revised: 6 June

2024; Accepted: 3 July 2024

doi: 10.1002/rse2.416

Abstract

Managing fuels is a key strategy for mitigating the negative impacts of wildfires

on people and the environment. The use of satellite-based Earth observation

data has become an important tool for managers to optimize fuel treatment

planning at regional scales. Fortunately, several new sensors have been launched

in the last few years, providing novel opportunities to enhance fuel characteri-

zation. Herein, we summarize the potential improvements in fuel characteriza-

tion at large scale (i.e., hundreds to thousands of km2) with high spatial and

spectral resolution arising from the use of new spaceborne instruments with

near-global, freely-available data. We identified sensors at spatial resolutions

suitable for fuel treatment planning, featuring: lidar data for characterizing veg-

etation structure; hyperspectral sensors for retrieving chemical compounds and

species composition; and dense time series derived from multispectral and syn-

thetic aperture radar sensors for mapping phenology and moisture dynamics.

We also highlight future hyperspectral and radar missions that will deliver valu-

able and complementary information for a new era of fuel load characterization

from space. The data volume that is being generated may still challenge the

usability by a diverse group of stakeholders. Seamless cyberinfrastructure and

community engagement are paramount to guarantee the use of these

cutting-edge datasets for fuel monitoring and wildland fire management across

the world.

Introduction

Wildland fires are essential ecological processes signifi-

cantly altered by anthropic activities (Bowman

et al., 2013; Kelly et al., 2020; Pais et al., 2023). A direct

consequence is a notable decline in global burned area

that affects ecosystems that depend on fire (Andela

et al., 2017) by leading to losses in biodiversity (Fide-

lis, 2020; Rosan et al., 2019) and ecosystem functioning

(Bond et al., 2005; McLauchlan et al., 2020). On the other

hand, the occurrence of extreme fire events, wherein large

areas are severely burned, has escalated in the last decades

(Adams et al., 2020; Fidelis et al., 2018; Lizundia-Loiola

et al., 2020; Stavros et al., 2014), causing social,
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economical, and environmental damages (Tedim

et al., 2018). Such events can become even more frequent

with warming and drying from climate change and com-

mensurate changes in fire season length and severity

(Abatzoglou et al., 2019; Jain et al., 2022; Pausas & Kee-

ley, 2021). Fire management has become a necessity to

ensure that wildland fires occur in the appropriate fre-

quency, intensity, and timing to maximize only their pos-

itive effects (Bowman et al., 2020).

Most of the strategies for fire control focus on fuel

management, as other factors may be rather difficult to

control (e.g., weather and topography) (Chuvieco

et al., 2014; Duff et al., 2017; Pettinari & Chuvieco, 2020).

Reference data for fuel characterization are traditionally

dependent on field samples that may lack temporal and

spatial representation. Alternatives based on remote sens-

ing technologies are often necessary for spatially explicit

fuel characterization used in management decisions (Gale

et al., 2021). Fortunately, the increasing availability of

resources that are coming from the remote sensing field

can support fire managers worldwide in achieving this

critical goal.

Remote sensing with spaceborne sensors is a prominent

technique to characterize fuels over large areas. The asso-

ciated costs to launch satellite systems can be on the

order of millions of dollars ($U.S.) for large satellites

(e.g., >1000 kg such as Landsat), but the information they

provide far exceeds those costs (Craglia & Pogor-

zelska, 2020; Straub et al., 2019). This is particularly evi-

dent when data and products are made publicly available

(Turner et al., 2015; Wulder & Coops, 2014). A successful

example comes from NASA’s Landsat program initiated

in 1972. The long-term data archives from Landsat have

been made freely available for users worldwide since

2008. Similarly, the European Copernicus program has

adopted open policies for the Sentinel missions since

2013 (Jutz & Milagro-P�erez, 2020). The adoption of open

data policy from these two major Earth observation pro-

grams resulted in a significant increase of users and

insights to support advances in many science fields,

including fire management (Masek et al., 2020; Wulder

et al., 2022; Zhu et al., 2019).

There are several crucial topics to explore concerning

the use of spaceborne remote sensing data for supporting

fire management (Moore, 2019). In line with this, the

impact of fires on the environment was ranked 1st among

various biodiversity metrics to be measured from space

(Skidmore et al., 2021). Furthermore, a significant part of

research seems focused on Mediterranean and temperate

forests (Gale et al., 2021), and fuel classification systems

may not be available for many of the fire-prone ecosys-

tems worldwide (Abdollahi & Yebra, 2023)—such as trop-

ical savannas, which are essential for Earth’s carbon

budget and biodiversity (Abel et al., 2020; Abreu

et al., 2017). Having globally available data for fuel char-

acterization is a promising asset to support advances in

fire research, management, and policy making.

Even with over 50 years of space-based Earth observa-

tions (Ustin & Middleton, 2021), we are in a new phase

where freely available data from spaceborne sensors at

finer spatial, spectral, and temporal resolutions are

becoming available. The objective of this article is to

identify the benefits arising from a new generation of

spaceborne sensors that can be used for fuel characteriza-

tion. We provide a summary of the needs and describe

the key characteristics of spaceborne sensors launched in

the last 5 years (2018–2022) to support advances in fuel

characterization at large scales. We further discuss

upcoming missions and tools to deal with the large data

volumes from these spaceborne sensors.

Characterizing fuels in wildland fire science

Fuels are any combustible material which in the context

of wildland fires includes the organic matter from both

live and dead vegetation (Duff et al., 2017; McLauchlan

et al., 2020). A wide range of fuel characteristics can be

measured to determine the proportion of the total fuel

data would burn under different environmental condi-

tions. This is required as fire-prone ecosystems vary in

vegetation structure, composition, and dynamics (Hollis

et al., 2015). A common practical approach for describing

fuel attributes in different ecosystems comes from classify-

ing the attributes into homogeneous groups that have

similar responses to fire. The groups are defined as “fuel

types” or “fuel models” and are usually associated with

specific applications (Abdollahi & Yebra, 2023; Aragon-

eses & Chuvieco, 2021; Arroyo et al., 2008; Keane, 2013;

Riccardi et al., 2007). For instance, the McArthur

(McArthur, 1966) system for Australia provides a

straightforward way to monitor fire danger for two vege-

tation types: forest and grassland (Abdollahi &

Yebra, 2023; McArthur, 1966). On the other hand, the

Northern Forest Fire Laboratory (NFFL) system (Ander-

son, 1982) defines 13 classes that can be used for fire

behavior modeling. The NFFL includes classes such as

short grasses, hardwood litter, and logging slash. Scott

and Burgan (2005) have also introduced 40 fuel models

that may supplant NFFL in some applications. Overall,

we see that the classification systems are practical but

tend to be only locally applied. They are not presently

available for all fire-prone ecosystems in the world and

their transferability may be challenging (Abdollahi &

Yebra, 2023).

Integrating field information into remote sensing

approaches offers opportunities to incorporate additional
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variables for fuel characterization (Dickman et al., 2023;

Gale et al., 2021). Since fire is a physical process, there

are core biophysical and biochemical variables determin-

ing how fire will ignite and spread (Sullivan, 2017a,

2017b; Van Wagtendonk, 2006). Following Gale

et al. (2021) these variables might be grouped as: (i)

sub-fuel elements, such as biochemical compounds and

water, (ii) fuel elements, such as particle size and shape,

and (iii) fuel assemblages such as quantity and

distribution.

Biochemical compounds are related to fuel’s emissions

and flammability (Weise & Wright, 2014). Flammability

can be summarized as a combination of ignitability (how

easy the fuel ignites), combustibility (how intense is the

combustion), consumability (how much of the fuel can

be entirely combusted), and sustainability (how long the

fuel burns) (Anderson, 1970; Guerrero et al., 2021; Mar-

tin et al., 1993; Popovi�c et al., 2021; White & Zip-

perer, 2010). In vegetation, chemical elements such as

cellulose, lignin, and resins are involved in combustion

and are highly variable depending on the species and eco-

system. Incombustible elements such as water also partici-

pate in the fuel’s reactions to fire. The fuel moisture

content (FMC) is a determinant component delaying fire

ignition, spread rate (Chuvieco, 2009), and the partition-

ing of gasses that will be emitted from a fire. In dead veg-

etation, FMC is affected by variations in meteorological

and microclimate conditions (Cawson et al., 2020; Mat-

thews, 2014; Pickering et al., 2021; Rakhmatulina

et al., 2021). In live vegetation, the FMC depends on

plant physiology, adaptive traits, and soil water availabil-

ity (Nolan et al., 2020, 2022; Scarff et al., 2021). Fuel par-

ticle size and shape are also related to fuel flammability

(Van Wagtendonk, 2006). Finer particles are more sus-

ceptible to faster heat exchange and water removal

(Andrews, 2018; Rothermel, 1972). The surface area-to-

volume ratio of particles has been one of the main

descriptors of fuel particle size incorporated into fire

behavior models (Essaghi et al., 2016). Finally, the aggre-

gation and arrangement of fuel components is a crucial

determinant of fire ignition and spread (Gale

et al., 2021). The amount of material available for burn-

ing, the fuel load, is directly related to the amount of

energy released from a fire (Wooster et al., 2005) and the

carbon emissions (Van Wagtendonk, 2006) when condi-

tions are favorable for burning (e.g., low moisture). Fuels

can be horizontally or vertically connected, facilitating fire

spread. For example, the horizontal distribution of fuels

can be determinant to fire final extent. Meanwhile, verti-

cally connected fuels can facilitate canopy fires that are

harder to control (Menning & Stephens, 2007; Reszka

et al., 2020). Many species-specific traits are important

for how all these fuel metrics are present and will affect

fire behavior (Richter et al., 2019). For instance, traits

such as leaf shape, bark thickness, and resin concentration

can affect flammability (Varner et al., 2022). Furthermore,

seasonal dynamics, physiological and phenological traits

(e.g., leaf decay and decomposition) can affect how fuels

accumulate (S�anchez-L�opez et al., 2023). When remote

sensing captures all these biochemical and biophysical

aspects that control fire combustion and behavior, it

offers a chance to move away from site-specific to trans-

ferable fuel characterization approaches.

Spaceborne remote sensing for large-scale
fuel characterization

Several variables associated with vegetation traits can be

retrieved from spaceborne remote sensors and associated

with the fuel characteristics. The most common ones are

summarized as the Remote Sensing Enabled Essential Bio-

diversity Variables (RSE-EBVs) (Skidmore et al., 2021)

(Figure 1). RSE-EBVs can be retrieved either directly

(e.g., canopy height) or derived through empirically and

physically based approaches (e.g., using aboveground bio-

mass models) (Duff et al., 2017; Franke et al., 2018;

Keane et al., 2001; Lamelas-Gracia et al., 2019; Verrelst

et al., 2019; Yebra et al., 2018). Biochemical components

of fuels are often retrieved with passive sensors, whereas

active sensors are more suitable for retrieving vertical

structure and fuel load (Szpakowski & Jensen, 2019; Vera-

verbeke et al., 2018).

Detailed spectral information is crucial for assessing

fuel biochemical compounds and FMC. For example,

FMC is a commonly estimated fuel attribute using space-

borne sensors (Garc�ıa et al., 2020; Miller et al., 2023;

Yebra et al., 2018). This is facilitated by the existence of

known absorption features related to liquid water in the

near-infrared (NIR, ~750–1100 nm) and short-wave infra-

red (SWIR, ~1100–2500 nm) spectral regions, typically

centered at about 970, 1200, 1450, and 1940 nm (Kni-

pling, 1970) (Figure 2). Furthermore, water’s influence on

transpiration affects surface temperature and the emitted

energy from leaves (Gerhards et al., 2019). Sensors capa-

ble of capturing thermal infrared range (TIR, ~2500–
14 000 nm) range of the spectrum (Neinavaz et al., 2021)

have the potential to detect the temperature changes to

help understand the effects related plant water stress. In

addition, the plant water status impacts photosynthesis

that can be linked to pigment content and the emission

of solar induced fluorescence (Gerhards et al., 2019; Mer-

oni et al., 2009). Similarly, structural carbon-based com-

ponents (e.g., cellulose and lignin) and nutrients (e.g., N,

P, and K) are responsible for part of the variability in the

spectral response of vegetation in the NIR and SWIR

regions (Kokaly et al., 2009; Ustin et al., 2004).
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Figure 1. Conceptual framework relating (A) primary fuel characteristics retrieved with remote sensing data (Gale et al., 2021) and (B)

spaceborne Earth observation measurements that allow the collection of linking metrics such as the (B3) Remote Sensing Enabled Biodiversity

Variables (RSE-EBVs) (Skidmore et al., 2021). *RSE-EBVs list is not exhaustive. (B1) example of spaceborne large footprint lidar measurements, (B2)

example of sectra from hyperspectral sensors.

Figure 2. Example spectra collected with a field spectrometer of live and dead vegetation from visible to shortwave infrared. Spectra examples

from the ECOSTRESS spectral library (Baldridge et al., 2009; Meerdink et al., 2019)—scripts for the library summarization and plotting the figures

available in Appendix S1 and online repository (Leite, 2023).
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Active sensors allow direct assessments of fuel vertical

structure and canopy-related metrics. This advantage

comes from the capability to generate 3D representations

through range measurements and penetration into vegeta-

tion vertical layers of sensors such as radar and lidar. The

signal tracking of synthetic aperture radar (SAR) sensors

is sensitive to either structure or dielectric characteristics

of vegetation (which includes vegetation moisture) (Kon-

ings et al., 2019) that can be assessed through polarimetry

(Li & He, 2022; Rao et al., 2020; Saatchi et al., 2007),

interferometry (Kumar et al., 2017; Zhou et al., 2009), or

tomography (Aghababaei et al., 2020; Tong Minh

et al., 2016) techniques. Lidar sensors often provide pre-

cise ranging measurements and have been widely used as

the state-of-the-art for vegetation structure mapping

using aerial and terrestrial platforms (Calders et al., 2020;

Eitel et al., 2016). Recent advances in spaceborne lidar

technology led to the launch of missions (see section

“New sensors, new opportunities”) to retrieve vegetation

vertical profiles, canopy metrics, and fuels across vertical

layers at finer spatial scale (Ashworth et al., 2010; Garc�ıa

et al., 2012; Hoffr�en et al., 2023).

The synergy between passive and active sensors offers

the potential for their combined use in fuel characteriza-

tion. Retrieving species diversity, for example, involves

looking at both the biochemical and structure traits of

vegetation (Rocchini et al., 2016). This is essential to sup-

port novel frameworks to fire behavior and effects model-

ing (Dickman et al., 2023; Nolan et al., 2022; Zylstra

et al., 2016). Furthermore, many fuel components such as

those from the surface (e.g., grasses and litter) can have

greater temporal dynamics and be harder to directly mea-

sure with remote sensors (Costa et al., 2020; Leite

et al., 2022; Oliveira et al., 2021). Improving the under-

standing of fuel dynamics could come from the integra-

tion of sensors that capture multiple structural and

compositional components (S�anchez-L�opez et al., 2023)

or offering higher temporal resolutions (Bajocco

et al., 2015; Verbesselt et al., 2007).

New sensors, new opportunities

The number of Earth Observation (EO) missions has

exponentially increased in the last decades, bringing

opportunities for fuel characterization (Figure S1) (Ustin

& Middleton, 2021). We identified the EO missions

launched in the last 5 years (2018–2022) offering freely

available data (Table 1). We further restricted the sensors

to those offering a level of spatial detail that can facilitate

the relationship with field reference data for the needs of

fuel managers. These needs might be hard to define as

they can be based on specific applications, their relation-

ship to a management unit, or even users familiarity with

current EO data products (Meddens et al., 2022). The

sensors we identified have a spatial resolution ranging

from 2 to 70 m considering some of the requirements

identified by (Meddens et al., 2022). Satellites carrying

multispectral sensors are joining space with other

long-term missions such as Landsat and Sentinel. Their

combination can leverage higher temporal resolution to

help in the understanding of fuel dynamics. Imaging spec-

trometers with bandwidths <13 nm measure the electro-

magnetic spectrum in higher spectral detail facilitating

chemical composition retrieval. Finally, lidar sensors give

unprecedented measures of vegetation vertical profiles

that are well related to canopy structure and fuel load

(Figure 3).

Multispectral sensors

Four multispectral missions with open data policies were

launched in the last 5 years. The spatial resolution of the

images from these sensors ranges from 2 to 70 m. The

missions include (launch date in parenthesis): CBERS-4A

(2019) (Oldoni et al., 2022; Vrabel et al., 2021),

Amazonia-1 (2021) (Moutinho, 2021; Oldoni et al., 2022;

Vrabel et al., 2021), Landsat-9 (2021) (Masek

et al., 2020), and ECOSTRESS (2018) (Fisher

et al., 2020).

CBERS-4A and Amazonia-1 were launched with the

objective of reducing revisit time of multispectral remote

sensors to track deforestation, especially in the Brazilian

Amazon rainforest (Moutinho, 2021; Vrabel et al., 2022).

They joined the previously launched CBERS-4 (Pinto

et al., 2016) to form a constellation of satellites with simi-

lar characteristics to collectively provide near-daily data

acquisitions. CBERS-4A/WPM panchromatic band spatial

resolution of 2-m has helped on the differentiation of tree

and shrub vegetation cover in an urban interface (Adorno

et al., 2023). This highlights the importance of open

satellite-based data at this spatial resolution for character-

ization of vegetation at a wildland-urban interface. Fur-

thermore, the combination of CBERS-4A/WFI and

Amazonia-1/WFI has allowed images of the same areas

every 5 days (Maurano et al., 2023). The possibility of

achieving a higher data frequency for an area by combin-

ing data from satellite constellations is a crucial step

towards characterizing temporally dynamic fuel character-

istics, such as moisture content (Quan et al., 2021; Yebra

et al., 2018).

Landsat-9 was launched in 2021, continuing the Land-

sat program legacy (Masek et al., 2020). Landsat-9 sensors

(OLI-2 and TIRS-2) have similar characteristics to Land-

sat 8 sensors (OLI-1 and TIRS-1) with bands in the

VNIR, SWIR, and thermal ranges of the spectrum.

Landsat-9 has an orbit that is 8 days out of phase from
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Table 1. Description of spaceborne satellites and instruments launched in the last 5 years (2018–2022) with freely available data for research and

spatial resolution of 2–70 m.

Type

Satellite/

instrument

Launch

year Description References Useful links

Multispectral ISS/ECOSTRESS 2018 ECOSTRESS has 5 spectral bands covering

the spectral range from 8000 to

12 500 nm, and has an additional band

centered at 1600 nm for geolocation and

cloud detection. The spatial resolution is

~38 9 69 m that is resampled to 70-m

cells. Revisit time can be 1–5 days but is

dependent on the ISS orbit.

(Fisher et al., 2020) Data products/access:

(ECOSTRESS, 2023)

Tools/tutorials:

(ECOSTRESS, 2023;

ecostress-utils, 2023)

CBERS-4A/WFI-

MUX-WPM

2019 CBERS-4A system is composed of three

sensors: Wide-Field Imager (WFI),

Multispectral camera (MUX), and

Wide-scan camera (WPM). The sensors

collect data in 4 bands (blue, green, red,

and NIR) with a spatial resolution of 55 m

(WFI), 16.5 m (MUX) and 8 m (WPM).

WPM has an additional panchromatic

band with a spatial resolution of 2 m.

Revisiting time is 31 days for MUX and

WPM and 5 days for WFI.

(Oldoni et al., 2022;

Pinto et al., 2016)

Data products/access:

(CBERS on AWS, 2023;

INPE, 2023)

Tools/tutorials: –

Amazonia-1/WFI 2021 Amazonia-1 satellite carries the WFI sensor

to collect data in 4 bands (blue, green,

red, and NIR) at a spatial resolution of

~60 m with revisit time of 5 days.

(Moutinho, 2021;

Vrabel et al., 2022)

Data products/access:

(AMAZONIA-1 on

AWS, 2023)

Tools/tutorials: –

Landsat-9/OLI-2 –

TIRS-2

2021 Landsat 9 sensors (OLI-2 and TIRS-2) have

similar characteristics to Landsat 8 sensors

(OLI-1 and TIRS-1) with bands in the VNIR,

SWIR, and thermal ranges of the

spectrum. The spatial resolution of

panchromatic, VNIR/SWIR, and TIR bands

is 15, 30, and 100 m, respectively. The

instruments have a revisit time of 16 days.

(Masek et al., 2020) Data products/access:

(USGS, 2020; GEE data

catalog, 2023a)

Tools/tutorials: (Landsat

Science, 2023a;

USGS, 2022)

Hyperspectral ISS/DESIS 2018 DESIS has 235 bands from 400 to

1000 nm. Bands in the VNIR region have

bandwidths of 2.5 nm while in the SWIR

region the bandwidth is 3.5 nm. The

images have 30 m resolution. Revisiting

time for data acquisition is dependent on

the ISS orbit. Revisiting time following the

ISS orbit can be ~3–5 days.

(Alonso et al., 2019) Data products/access:

(German Aerospace

Center (DLR), 2019a,

2019b)

Tools/tutorials: –

PRISMA/HYC-PAN 2019 PRISMA’s Hyperspectral Camera (HYC)

records 241 bands: 66 in the VNIR (~400–

1010 nm), 174 in the SWIR (~920–

2500 nm), and one Panchromatic (PAN,

400–700 nm). Bandwidths are <13 nm in

the VNIR and <14.5 nm in the SWIR

regions of the electromagnetic spectrum.

PRISMA/HYC provides images of ~30 m

resolution. The PAN channel provides

images of ~5 m for finer assessments.

Revisiting time is 29 days at nadir and

7 days for off-nadir acquisitions.

(Cogliati et al., 2021) Data products/access:

(ASI PRISMA, 2023)

Tools/tutorials: (Busetto &

Ranghetti, 2020;

prisma, 2023;

rPRISMA, 2023)

(Continued)
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Landsat-8 which means that it is possible to have images

every 8 days while Landsat-8 and Landsat-9 are in orbit

together. The long-term history and spatial coverage of

the mission enable the generation of country-level

monthly burned area products to help understand spatial

temporal variability of fire (Neves et al., 2023). The

higher radiometric resolution of Landsat-9 contributes to

improved burned area mapping (Seydi & Sadegh, 2023).

The Landsat sensors also share similarities with European

Space Agency (ESA) Sentinel-2 images making it possible

to generate products such as the Harmonized

Landsat-Sentinel dataset (HLS) (Claverie et al., 2018) to

potentially improve revisit frequency to ~3 days depend-

ing on latitude.

The ECOsystem Spaceborne Thermal Radiometer

Experiment on Space Station (ECOSTRESS) represents a

significant improvement in the use of thermal bands in

spaceborne remote sensing to globally monitor plant

evapotranspiration at finer spatial and temporal resolu-

tion (Fisher et al., 2020). Previous sensors were con-

strained from capturing plant diurnal cycles by always

collecting data at the same time of the day (e.g., Landsat,

Table 1. Continued.

Type

Satellite/

instrument

Launch

year Description References Useful links

ISS/HISUI 2019 HISUI has 185 bands covering from 400 to

2500 nm with bandwidths of 10 nm in

the VNIR and 12.5 nm in the SWIR

regions of the electromagnetic spectrum.

The spatial resolution in HISUI images is

30 m along track and 20 m cross track.

Revisiting time follows ISS orbit.

(Matsunag et al., 2021;

Matsunaga

et al., 2020)

Data products/access:

(HISUI, 2023; Japan

Space Systems, 2023)

Tools/tutorials: –

EnMAP/HSI 2022 EnMAP’s Hyperspectral Imager (HSI) carries

a sensor that records information in 242

bands from 420 to 2500 nm with

bandwidths of 6.5 nm in the VNIR and

10 nm in the SWIR regions of the

electromagnetic spectrum. The spatial

resolution of HSI images is 30 m. Revisit

time is 4 days for acquisitions up to 30°

off-nadir or 27 days for up to 5° off-

nadir.

(Guanter et al., 2015) Data products/access:

(EnMAP, 2023a)

Tools/tutorials:

(EnMAP, 2023b;

Scheffler et al., 2020)

ISS/EMIT 2022 EMIT has 285 bands from 380 to 2500 nm

with bandwidths of <13 nm. Surface

reflectance products are delivered with

spatial resolution of 60 m. Revisit time

follows the ISS orbit.

(Green, 2022; Green

et al., 2020)

Data products/access:

(EMIT, 2023a; LP

DAAC, 2023a)

Tools/tutorials:

(EMIT, 2023b, 2023c)

Lidar ISS/GEDI 2018 GEDI is mounted on the International Space

Station (ISS) and is the first spaceborne

lidar system designed to map forests. It is

a full-waveform lidar system composed of

three lasers that together shoot 8 laser

beams that illuminate the Earth’s surface

in ~25-m footprints separated 60 m along

track and 600 m across track.

(Dubayah, Blair,

et al., 2020; Dubayah,

Armston, Healey,

Bruening, et al., 2022)

Data products/access:

(GEDI, 2023a, 2023b;

GEE data

catalog, 2023b;

MAAP, 2023)

Tools/tutorials: (LP

DAAC, 2023b;

ORNL, 2023; Silva

et al., 2020)

ICESat-2/ATLAS 2018 The ATLAS sensor on board ICESat-2 is a

photon-counting lidar shooting 6 laser

beams of green light (532 nm) to the

Earth surface. The beams are organized in

3 pairs about 3 km apart and with a

distance between paired beams of ~90 m.

Each beam illuminates an area within a

~13 m footprint.

(Markus et al., 2017) Data products/access:

(IcePix, 2023; IceSat-

2, 2023)

Tools/tutorials:

(IcePix, 2023;

NSIDC, 2023)

(Shean et al., 2023;

SlideRule Earth, 2023)

Useful links include where to find or request the free products and examples of tools and tutorials available online. Detailed information on

Tables S2 and S3 is presented in the Appendix S1.
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MODIS, VIIRS, and Suomi-NPP) or by having coarser

spatial resolution (e.g., GOES). ECOSTRESS deployment

on the ISS allows data acquisition at different times of

the day using 5 thermal bands at ~70 m spatial resolution

and 1–5-day revisit time (higher latitudes are revisited

more frequently). Changes in plants’ evapotranspiration

throughout the day can be captured and used to inform

studies of plant water stress and its consequences (Xiao

et al., 2021). Plant water stress derived from ECOSTRESS

has been demonstrated to be a good predictor of fire

severity (Masara et al., 2022; Pascolini-Campbell

et al., 2022; Wilder & Kinoshita, 2022). Moreover, the

ability to monitor evapotranspiration can contribute to

the assessment of functional traits related to post-fire veg-

etation recovery (Poulos et al., 2021). By including ECOS-

TRESS into frameworks to assess post-fire effects with

multiple sensors, we can gain a more comprehensive

understanding of ecosystems’ resistance and resilience to

fire (P�erez-Cabello et al., 2021).

Hyperspectral sensors

Between 2018 and 2022, five missions were launched carry-

ing imaging spectrometers with high spectral resolution

(e.g., bands narrower than 13 nm), namely, German Aero-

space Center (DLR) Earth Sensing Imaging Spectrometer

DESIS (Alonso et al., 2019; Krutz et al., 2019), PRecursore

IperSpecttrale della Missione Applicativa (PRISMA)

(Cogliati et al., 2021), Hyperspectral Imager Suite (HISUI)

(Matsunaga et al., 2020), Environmental Mapping and

Analysis Program (EnMAP) (2022) (Guanter et al., 2015),

and EMIT (Green, 2022; Green et al., 2020). The sensors

collect hundreds of bands in the visible to SWIR regions in

bandwidths lower than 13 nm at a spatial resolution of

30 m, except for EMIT’s products (60 m) (Figure 4).

High-level products from these sensors include geometri-

cally and atmospherically corrected (L2) image products

from DESIS, PRISMA, HISUI (for research purpose),

(Matsunaga et al., 2020), EnMAP, and EMIT. EMIT’s data

coverage focused on specific sites on the Earth’s surface

(updated data coverage can be found at EMIT’s open data

portal (EMIT, 2023a).

DESIS, HISUI, and EMIT are deployed on the Interna-

tional Space Station (ISS) that has a non-sun-

synchronous “shifting” orbit allowing data acquisition at

different times of the day but having limitations related

to data coverage. PRISMA has a nominal coverage speci-

fied between 70° N and S latitudes (Cogliati et al., 2021),

whereas EnMAP collects data globally in near-nadir mode

(view zenith angle ≤5°) (Guanter et al., 2015). Data avail-

ability and information related to data access or request

of the hyperspectral missions are available at the mis-

sions’ websites (Table 1). Even though many of the new

sensors do not have full Earth coverage or controlled

revisit time, their use is helping pave the way for upcom-

ing spaceborne image spectroradiometers.

The effectiveness of imaging spectroscopy for fire appli-

cations has been more widely demonstrated using data

from airborne platforms (Veraverbeke et al., 2018), and

the capabilities of the new hyperspectral sensors are just

starting to be fully unveiled. For example, effectively

deriving subpixel components for fuel map and fire sever-

ity classification has been demonstrated using PRISMA

data (Quintano et al., 2023). Recent studies have also

shown that species richness and diversity predictions

based on DESIS data can outperform predictions based

on multispectral data (Guo et al., 2023; Rossi & Gholiza-

deh, 2023). Nonetheless, the relationship between space-

borne spectroscopy-derived species richness to fire

behavior and effects is yet to be fully understood.

Figure 3. Summary of core fuel characteristics retrieved with spaceborne sensors for available spectral, temporal, and spatial resolution. SAR

stands for synthetic aperture radar sensors; thermal sensors are included as part of multispectral.

8 ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Lidar sensors

The spaceborne lidar missions Ice, Cloud, and Land Ele-

vation Satellite-2 (ICESat-2) (Markus et al., 2017) and

Global Ecosystem Dynamics Investigation (GEDI)

(Dubayah, Armston, Healey, Bruening, et al., 2022;

Dubayah, Blair, et al., 2020) were launched in 2018,

leveraging opportunities to improve fuel load and vertical

structure retrieval at global scales. They are based on dif-

ferent lidar technologies. The ATLAS sensor on ICESat-2

is a photon-counting lidar (operating at 532 nm) mean-

ing the receiver only needs the energy of a single return-

ing photon to trigger a measurement. GEDI, on the other

hand, onboard the (ISS) is a full-waveform lidar

(1064 nm) that operates by recording all the returned

energy as a function of time (Liu et al., 2021). Both sys-

tems operate in a sampling design with laser shots sys-

tematically spaced when they reach the Earth surface

(Figure 5). The requirements for developing spaceborne

lidar systems with global wall-to-wall coverage are yet to

be reached (Hancock et al., 2021).

ICESat-2 was launched following the ICESat mission

with most mission requirements related to measuring and

monitoring ice sheet changes (Markus et al., 2017). Nev-

ertheless, the utility of ICESat-2 data extends to vegeta-

tion applications (Duncanson et al., 2020; Narine

et al., 2020; Neuenschwander & Pitts, 2019). Vegetation

height and cover are available as ICESat-2 land, water,

and vegetation elevation products (ATL08), and land/

canopy gridded products (ATL18). GEDI, on the other

hand, was the first spaceborne lidar sensor specifically

designed to map Earth’s vegetation with potential to fully

penetrate vegetation with 95–98% of canopy cover

(Dubayah, Blair, et al., 2020). GEDI provides high-level

products at the footprint level: vegetation height (L2A,

Dubayah, Hofton, et al., 2020), canopy cover and vertical

profile metrics (L2B, Dubayah, Tang, et al., 2020), and

aboveground biomass density (AGBD) (L4A, Dubayah,

Armston, Kellner, Duncanson, et al., 2022; Duncanson

et al., 2022; Kellner et al., 2023); and gridded at 1 km2

cells: gridded level 2 metrics (L3, Dubayah et al., 2021),

and gridded AGBD (L4B, Dubayah, Armston, Healey,

Yang, et al., 2022). Studies have reported root mean

square errors for canopy height metrics of ~1–4 m (Li

et al., 2023; Liu et al., 2021). For AGBD products, the

GEDI mission aims to achieve standard error <20% for

cells where AGBD is larger than 100, and <20 Mg ha�1

standard error when AGBD is less than

100 Mg ha�1(Dubayah, Armston, Healey, Bruening,

et al., 2022). Currently, GEDI mission operations have

been paused, and it will resume operations in 2024

(Smith, 2023).

The use of data from spaceborne lidar sensors has been

essential in advancing the mapping and comprehension

of vegetation structural characteristics in fire science. For

example, ICESat-2 data has helped capture structural

changes in vegetation due to fire (Konduri et al., 2023;

Liu et al., 2019). ICESat-2 data capabilities for

Figure 4. Spectral bands captured by spaceborne sensors in the (A) visible, near-infrared (NIR), shortwave-infrared (SWIR) and (B) thermal-infrared

(TIR) regions of the spectra. *Figure scale constrained the complete visualization of the narrow spectral bands of hyperspectral systems. Number

of bands (n) for the hyperspectral platform/instrument are: ISS/DESIS (n = 235), Prisma/HYC (n = 240), ISS/HISUI (n = 185), EnMAP/HSI (n = 242).

1 lm = 1000 nm.
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characterizing fuels remains largely unexplored (Brown

et al., 2023). The use of GEDI data has helped improve

fuel classification (Hoffr�en et al., 2023), predict fuel load

across vegetation vertical layers (Leite et al., 2022), and

also quantify fire-related structural changes in vegetation

(Huettermann et al., 2023). The derivation of other

structure-related fuel characteristics such as canopy base

height and canopy bulk density still needs to be explored.

GEDI and ICESat-2 are both sampling sensors, which

means that the data is not collected “wall-to-wall” (Fig-

ure 4). This can be overcome with their integration with

imaging sensors (Potapov et al., 2021). Joining these com-

plementary capabilities can help to improve mapping fuel

characteristics in space and time (Myroniuk et al., 2023).

This is particularly important for fuels that are temporally

dynamic such as those from lower vegetation layers (e.g.,

surface and ground fuels) (Leite et al., 2022).

Looking forward

Long-term Earth observation programs
continuation

Long-term programs that have contributed to the advance

of space-based EO are expected to develop new sensors in

the decades ahead. The follow-on of the Landsat missions

named Landsat-Next (Landsat Science, 2023b) will have

improved spatial, temporal, and spectral resolutions fea-

turing 26 bands, spatial resolutions of 10–60 m. The

Landsat-next mission is designed as a constellation of

three satellites, enabling a 6-day revisit time. Landsat Next

satellites are expected to be launched in late 2030 and to

collect data with its predecessor Landsat-9 (Wulder

et al., 2022). The ESA is working to carry on the legacy

of the Sentinel missions into the future. Soon, the

upcoming Sentinel-1C and Sentinel-1D missions should

replace Sentinel-1B (decommissioned in 2022) and

Sentinel-1A for C-band SAR data acquisition every 6 days

(Geudtner et al., 2021). Later this decade, the Sentinel-1

Next Generation mission will extend C-band data collec-

tion into the 2030s featuring improvements in data acqui-

sition characteristics (Zonno & Matar, 2021). In the same

time frame, ESA is also planning to introduce enhance-

ments in the optical components of Sentinel-2 and

Sentinel-3 in new missions (L€oscher et al., 2020). Finally,

we also note that there are references for data starting to

be open for the Gaofen satellites that are part of the Chi-

nese High-Resolution Earth Observation System program

(Chen et al., 2022; Liu et al., 2023). Lower-level products

may be available requiring additional processing before

applying them to end uses (Chen et al., 2022; Zhong

et al., 2021), but analysis ready data are also under

Figure 5. Figure exemplifying data collection over vegetation of spaceborne lidar sensors ICESat-2/ATLAS and GEDI. These sensors collect data in

(A) a sampling pattern with footprints of ~13 m (ATLAS) and ~25 m (GEDI); (B1, B2) are subsets of the transects. The ICESat-2/ATLAS transect

(B1) has the points classified for noise, vegetation, canopy top, and ground, available in the product ATL08. Figure (C1) is a density plot for a

250 m subset of the ICESat-2/ATLAS transect. Figure (C2) is the returned energy from a single GEDI footprint. Scripts to make the plots are

available in the appendix (in Appendix S1) and on an online repository (Leite, 2023). GEDI and ICESat-2/ATLAS tracks extracted with SlideRule

(Shean et al., 2023; SlideRule Earth, 2023).
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development (Zhong et al., 2021). Similarly, the Sustain-

able Development Science Satellite-1 (SDGSAT-1),

launched in 2021 and developed by the Chinese Academy

of Sciences, is expected to provide freely available data

(Ge et al., 2022).

Upcoming missions

Unprecedented SAR datasets are expected in the next few

years. The SAR missions NISAR and BIOMASS are

planned to be launched in 2024. NISAR will have global

data collection using the L band and will be the first sat-

ellite to allow dual-frequency analysis by acquiring data

using L and S bands on selected sites (Kellogg

et al., 2020). NISAR will also have an exact repeat cycle

of 12 days that will allow more frequent interferometric

combinations and analysis. The mission will collect over

85 TB of data per day and plans to meet the requirements

of yearly biomass disturbance mapping at 100 m spatial

resolution, though lower-level products will be delivered

at finer spatial resolutions (e.g., instrument nominal reso-

lution of 7–48 m depending on acquisition mode) (Blu-

menfeld, 2017; NISAR, 2018). Meanwhile, BIOMASS is

the first spaceborne sensor operating at the P-band, which

is the SAR band with the highest penetration capability in

dense vegetation and likely most effective to measure veg-

etation biomass (Quegan et al., 2019). BIOMASS acquisi-

tion parameters will further allow the production of

vegetation profiles through tomographic analysis of the

returning signal for the first three years of its life cycle.

BIOMASS mission requirements include biomass and for-

est height maps at 200 m resolution and forest distur-

bance at 50 m resolution (Quegan et al., 2019). Note that

there might be restrictions for BIOMASS operation that

may limit data availability in some regions of the world

(Quegan et al., 2019). Nevertheless, great opportunities

arise from the integration of NISAR and BIOMASS with

GEDI that are planned to operate together until the end

of the decade. Their combination is boosted by their pres-

ence in the Multi-Mission Algorithm and Analysis Plat-

form (MAAP, Albinet et al., 2019), a joint NASA-ESA

collaborative cloud computing environment. Other SAR

missions are also planned toward the end of the 2020–
2030 decade such as TanDEM-L (Moreira et al., 2015;

Schandri et al., 2022), ALOS-4 (Motohka et al., 2019,

2021), ROSE-L (Geudtner et al., 2021), and CBERS-6

(CLBRIEF, 2023; g1, 2023) to continue to support

SAR-based vegetation analysis.

The current hyperspectral missions should lay ground

for a future of imaging spectroscopy from space. The Sur-

face Biology and Geology (SBG) mission (Schimel &

Poulter, 2022; Stavros et al., 2023) and Copernicus

Hyperspectral Imaging Mission for the Environment

(CHIME) mission (Nieke & Rast, 2018) are the next gen-

eration of this type of sensor. SBG and CHIME will have

global coverage, bandwidths <10-nm in the VSWIR, and

spatial resolution of 30 m. Revisit time can be potentially

less than 8-days by combining SBG and CHIME datasets

(Poulter et al., 2023).

Finally, in the context of wildfire science, it is impor-

tant to mention the first satellite with design planned for

operational wildfire monitoring in Canada named Wild-

FireSat (Johnston et al., 2020). This mission is under

development and delivers images with coarser resolution

than others cited in this article because the mission plan-

ning is focused on different objectives such as having

near-real time data acquisitions, measuring wildfire

behavior, and mapping smoke plumes. A key step toward

the development of the sensors is the interaction with

end-users to determine mission requirements including

temporal resolution, data coverage, and latency (Crowley

et al., 2023; Johnston et al., 2020; McFayden et al., 2023).

Maximizing EO data impact

The present and future EO sensors (Figure 6) are produc-

ing an increasing volume of data to meet the needs of a

diverse group of users, which presents both opportunities

and challenges. Making data open and easily accessible

for the target users plays a critical role in the effective uti-

lization of EO data. There has been a notable increase in

the number of participating agencies operating and mak-

ing satellite datasets available through several spatial data

infrastructures. It is important to note, nonetheless, the

significance of upholding standards for data validation

and quality reporting to facilitate user’s interoperability

across multiple sensors (Niro et al., 2021). Not all the

datasets are easily available yet. Many efforts are being

made to deliver higher-level products, e.g., by building

data cubes for specific countries (e.g., Ferreira et al., 2020;

Giuliani et al., 2017; Lewis et al., 2017) and developing

harmonized data products (e.g., Claverie et al., 2018).

Additionally, following standardized structures and speci-

fications such as the Spatio-Temporal Asset Catalog

(STAC) (Simoes et al., 2021; STAC, 2021) can simplify

data access by reducing the need to develop specific pipe-

lines to access and process each available dataset.

Current trends to process the available datasets point

to through data streaming and cloud computing, which

reduce the need to download large amounts of data and

in-house high-performance computing resources. Avail-

able cyberinfrastructures have facilitated this effort by

combining data access and processing capabilities into a

single platform (e.g., Google Earth Engine, Sentinel Hub,

Open Data Cube, MAAP—Gomes et al., 2020). Improve-

ments may be necessary to provide more levels of data

ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11
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readiness to meet needs of users with a range of comput-

ing skills, improve communication with stakeholders, and

allow the reproducibility of methods (Gomes et al., 2020).

The deployment of public cloud cyberinfrastructure (e.g.,

NSF’s Cyverse) is a prominent alternative to facilitate

access to advanced computing resources to allow a range

of users to process the data that is becoming available

(McIntosh et al., 2023; Swetnam et al., 2024). The collab-

orative nature of these infrastructures aligns well with

open science principles, which include making the

approaches transparent and accessible (Vicente-Saez &

Martinez-Fuentes, 2018). This accountability is essential

to ensure that methods can be effectively transferred and

adapted by different users.

In this sense, community engagement is an important

factor for co-developing the next generation of spatial

data infrastructure and products to increase and diversify

the number of EO data users. Actively hearing a diverse

range of users creates more inclusive and usable data

products. Furthermore, the awareness of how the data

could impact local communities in different ways has to

be considered (de Lima et al., 2022; Walter et al., 2021).

This collaborative approach is essential for leveraging the

full potential of EO data ensuring that it contributes to

cross-scale social and environmental sustainability.

Conclusion

Wildland fire management is essential to maintain the

functionality of ecosystems and reduce the risks of

extreme fire events. Leveraging the use of a new genera-

tion of spaceborne sensors can help managers to achieve

these crucial goals. Fuel load and vertical structure can be

obtained due to the penetration capacity of spaceborne

active sensors, such as GEDI. New sensors collecting data

in narrow bands of the electromagnetic spectrum can

Figure 6. Timeline of data collection for the new satellites and instruments. Mission length is represented as a sum of both nominal (darker

color) and potential (lighter color) mission lifetimes, which may depend on several factors. Names in the dotted lines represent previous missions

to acknowledge the continuation of long-term Earth observation programs.
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improve the retrieval of key biochemical constituents

across large areas. Finally, data integration between lidar,

hyperspectral, and constellations of multispectral and

radar sensors may give the opportunity to scale up fuel

characteristics in space and time to understand fuel

dynamics. It is noteworthy that several missions are

planned for this decade such as BIOMASS, NISAR, SBG,

CHIME, and Landsat-Next to ensure the continuity of

the use of EO systems for fuel characterization. The

increasing availability of cross-mission data products,

open-source tools, and seamless cloud-computing plat-

forms is crucial for enabling the use of these cutting-edge

datasets by multiple stakeholders across the world.
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