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ABSTRACT 

Background. Accurately estimating burned area from satellites is key to improving biomass 
burning emission models, studying fire evolution and assessing environmental impacts. Previous 
studies have found that current methods for estimating burned area of fires from satellite active-fire 
data do not always provide an accurate estimate. Aims and methods. In this work, we develop a 
novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of 
non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) 
active-fire detections. Hourly time series are created by combining VIIRS estimates with Fire 
Radiative Power (FRP) estimates from GOES-17 (Geostationary Operational Environmental 
Satellite) data. Conclusions, key results and implication. We evaluate the performance of 
the algorithm for both accumulated and change in burned area between airborne observations, and 
specifically examine sensitivity to the choice of the parameter controlling how much the boundary 
can shrink towards the interior of the area polygon. Results of the hourly accumulation of burned 
area for multiple fires from 2019 to 2020 generally correlate strongly with airborne infrared (IR) 
observations collected by the United States Forest Service National Infrared Operations (NIROPS), 
exhibiting correlation coefficient values usually greater than 0.95 and errors <20%.  

Keywords: active-fire detections, burned area, fire radiative power, GOES-ABI, NIROPS, 
NOAA-20, satellites, Suomi-NPP, VIIRS, wildfire. 

Introduction 

In addition to the destruction that wildfires can cause to infrastructure and homes, they 
also emit large amounts of smoke that contain substances harmful to human health like 
particulate matter 2.5 (PM2.5) (Wegesser et al. 2009; Munoz-Alpizar et al. 2017). 
Accurately predicting and estimating wildfire emissions has become critical as more 
people move into the wildland–urban interface and wildfire activity in the western 
United States continues to increase (Westerling et al. 2006; Radeloff et al. 2018). 
Longer fire seasons, and earlier snowmelts and springs contribute to increasing fire 
activity (Westerling et al. 2006). 

Improving quantification of burned area of wildfires is essential to improving biomass 
burning emissions predictions. The commonly used ‘bottom–up’ methodology requires a 
combination of fuel information, estimated burned area and emission rates of chemical 
species (Seiler and Crutzen 1980; French et al. 2011; Paton-Walsh et al. 2012). Fuel 
availability and other bottom–up components may better predict carbon emissions and 
changes in fire size (Fernandes et al. 2016; Walker et al. 2020). Improved burned area 
estimates may therefore facilitate improved predictions of biomass burning emissions for a 
variety of modelling applications. Recent work in biomass burning emissions predictions 
has used a fusion of polar-orbiting and geostationary sources to enhance hourly estimates 
(Li et al. 2022). 
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Satellite remote sensing provides the only pathway to 
quantify fire activity and biomass burning emissions world-
wide. These active-fire detection data have the capacity 
to estimate burned area and emissions using instruments 
on board polar-orbiting satellites such as the Moderate 
Resolution Imaging Spectroradiometer (MODIS) or the 
Advanced Very High Resolution Radiometer (AVHRR) (Soja 
et al. 2004; Sukhinin et al. 2004; Wiedinmyer et al. 2010). 
However, the resolution of the fire products for AVHRR and 
MODIS (Csiszar et al. 2003; Giglio et al. 2006), which at nadir 
are 1.1 and 1 km respectively (Belward and Lambin 1990;  
Giglio et al. 2016), is not sufficient to capture details of 
individual fire fronts located within a given pixel (Peterson 
and Wang 2013; Peterson et al. 2013; Schmidt 2019). 

Fire detections from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) I-Band sensor have an enhanced 
nadir spatial resolution of 375 m, thus the capacity to detect 
smaller fires and increase overall accuracy of burned area 
estimations (Schroeder et al. 2014; Oliva and Schroeder 
2015). This imagery provides the higher resolution neces-
sary to approximate a solution for the Gauss Circle Problem 
(Berndt et al. 2018), which constrains the number of integer 
lattice points needed to define the area of a polygon, which 
is the basis for our method. The higher-resolution VIIRS data 
enable an increased number of active-fire detections in a fire 
perimeter compared with MODIS or AVHRR (Goldberg et al. 
2013; Wolfe et al. 2013; Schroeder et al. 2014). Gaps still 
remain, however, in assessing how well VIIRS sensors can be 
used to estimate burned area (Briones-Herrera et al. 2020), 
especially utilising the VIIRS sensor launched aboard the 
National Oceanic and Atmospheric Administration (NOAA) 
NOAA-20 satellite launched in 2017. 

In addition to active-fire detections from polar-orbiting 
satellites, active-fire detections and fire radiative power 
(FRP) derived from geostationary satellite sensors, such as 
the Geostationary Operational Environmental Satellite 
(GOES)-R Series, can also be used to characterise fire beha-
viour (Schmidt 2019). The GOES-17 Advanced Baseline 
Imager produces fire information on a fairly coarse spatial 
footprint covering 5–8 km2 over the contiguous United 
States based on Wildfire Automated Biomass Burning 
Algorithm (WFABBA) outputs. However, when compared 
with twice-daily observations from polar-orbiting satellite 
sensors, geostationary sensors provide a much higher tem-
poral resolution, with scans every 5 min over the continental 
United States (CONUS) (Schmit and Gunshor 2019). This 
finer temporal resolution provides a detailed representation 
of fire behaviour over time, which is critical for estimating 
growth between overpasses of polar-orbiting sensors. 

Large incidents in the western United States are routinely 
observed by the National Infrared Operations (NIROPS) pro-
gram run by the United States Forest Service (USFS) using 
airborne infrared (IR) sensors (Page et al. 2019). Verification 
of satellite-based burned area with aircraft observations can 
be challenging owing to the temporal offset between polar- 

orbiting satellite overpasses and these aircraft observations 
(Oliva and Schroeder 2015). If a satellite overpass occurs 
during a time of major fire growth after aircraft have already 
observed the fire, it may appear that the satellite is over-
estimating true fire size, when in reality it may be accurately 
estimating fire size at the time of the overpass. 

This study develops a new method to estimate burned area 
using a combination of polar-orbiting and geostationary sat-
ellite sensors. Incorporating near-continuous data from geo-
stationary satellite sensors based on FRP variations observed 
with burned area estimates from polar-orbiting satellite sen-
sors, hourly time series of fire burned area can be obtained. 
This method can be used to reduce the impact of time offsets 
between airborne and polar-orbiting satellite overpasses. The 
main improvement this method provides is a way to achieve 
highly accurate temporal burned area estimates without sac-
rificing high spatial resolution. This can be helpful in multiple 
applications, such as calculations of hourly emissions for 
bottom–up approaches without having to apply fixed diurnal 
cycles (Ye et al. 2021) assisting with evaluation of methods to 
predict fire spread at hourly time resolution that are generally 
evaluated at coarser time resolutions such as those from 
VIIRS, NIROPS or with final perimeters (Muñoz-Esparza 
et al. 2018; Coen et al. 2020). 

Study region and test fires 

This study focuses on the wildfires in the western United States 
(final fire sizes from 4200 to >100 000 ha) shown in Fig. 1. 
The western United States has robust spatial and temporal 
coverage from both geostationary satellites, like GOES-17 
(occupying the GOES-West position during the study period), 
and polar-orbiting satellites. Additionally, the western United 
States has frequent IR observations of large fires from NIROPS. 

Williams Flats 

The Williams Flats Fire was selected for detailed examina-
tion in this study. It burned on the Colville Indian 
Reservation in Washington State from 2 August 2019 until 
it was fully contained on 25 August 2019 with a final size of 
17 986 ha, according to the Incident Command System ICS- 
209 report. The Williams Flats Fire was heavily observed 
and exhibited a range of fire growth patterns. The fire was 
monitored by NIROPS, multiple satellites and NASA’s ER-2 
and DC-8 aircraft during the Fire Influence on Regional to 
Global Environments Experiments-Air Quality (FIREX-AQ) 
field campaign (Warneke et al. 2022). 

The Williams Flats Fire exhibited unique patterns of diur-
nal fire growth. During the first days after ignition, the fire 
followed a typical diurnal pattern of fire growth (Mu et al. 
2011; Andela et al. 2015) with the largest growth occurring 
during the afternoon and the fire becoming less active at 
night. As the fire continued to grow, however, it actively 
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burned overnight. This behaviour has been repeatedly 
observed in large western wildfires during periods of extreme 
fire growth (Peterson et al. 2015; Saide et al. 2015). Large 
active periods of fire growth were detected by satellites over-
night, especially on 7 and 8 August 2019 UTC (Coordinated 
Universal Time). The Williams Flats Fire exhibited extreme 
fire behaviour on 8 August 2019 UTC when the fire produced 
multiple pyrocumulonimbus (National Aeronautics and 
Space Administration (NASA) 2019). 

Other 2019 fires 

In addition to the Williams Flats Fire, other fires sampled during 
the FIREX-AQ field campaign and notable incidents from 2019 
were used (Table 1). Additional fires were chosen to diversify 
the location, fire behaviour, size and topography, among other 
features, to provide rigorous testing of the algorithm across a 
variety of conditions. Of the 2019 fires, the 204 Cow and 
Walker Fires are also discussed in the text. Detailed statistics 
and maps for the other 2019 fires are in the supplement. 

2020 fires 

2020 was a record-breaking fire season with some of the 
largest fires in state history for multiple states in the United 

States. In total, more than 4 million ha burned in the United 
States (National Interagency Fire Center n.d.). Table 1 shows 
the fires chosen from the 2020 fire season. All fires studied 
are single incident fires; none are complexes. Complexes are 
two or more incidents in a general area managed by the 
same incident commander or a unified command (United 
States Forest Service n.d.). Complexes are an area of future 
research to continue to explore the performance of the 
algorithm. Of the 2020 fires, the Dolan, Lake and 
Riverside Fires are analysed here, with the statistics and 
maps for the remaining fires found in the supplement. 

Observational datasets 

VIIRS 375 m data 

The NASA-generated VIIRS Active Fire 375 m VNP14IMG and 
VJ114IMGTDL Collection 1 data products and compatible 
NOAA-generated products are available from both the Suomi 
National Polar-orbiting Partnership (SNPP) (2019 and 2020) 
and NOAA-20 (2020) satellites of the Joint Polar Satellite 
System (Schroeder and Giglio 2017). SNPP flies in a sun- 
synchronous orbit, crossing the equator at ~1330 hours and 
~0130 hourslocally for ascending and descending nodes, 
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Fig. 1. Map of the study domain. Fires 
used to test the algorithm are highlighted 
with red dots, with fire names near the 
corresponding marker.   
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respectively, while NOAA-20 also has a local equatorial crossing 
time of ~0130/1330 hours and has ~50.5 min of separation 
from SNPP (Wolfe et al. 2013; Schroeder et al. 2014; Cao 
et al. 2018). 

GOES data 

The GOES-17 ABI (referred to as ABI hereafter) FRP data from 
the WFABBA Versions 6_5_012g and 6_6_001g hotspot detec-
tion algorithm were used (Schmidt 2019). Most 2019 data are 
available on the FIREX-AQ archive, while some 2019 and all 
2020 ABI FRP data were obtained directly from University of 
Wisconsin Space Science and Engineering Center (SSEC). 
Although the GOES-W ABI spatial resolution is coarser than 
the VIIRS spatial resolution (5–8 km2 for the CONUS based on 
WFABBA outputs), the ABI data have a much higher temporal 
resolution at 5 min over CONUS. The relatively large size of the 
detections makes the area estimates much larger than reality 
using an accumulation method. FRP is an instantaneous esti-
mate of the power released by a fire and has been extensively 
tied to various measurements of fire behaviour and intensity 
(Li et al. 2018). Additionally, geostationary FRP has been 
shown to be well correlated with fire behaviour and aerosol 
and gas emissions from wildfires (Wiggins et al. 2020). As a 
result, ABI FRP data were used to describe the temporal evolu-
tion of burned area and are expected to result in a more 
realistic evolution than linearly interpolating VIIRS estimates. 

NIROPS data 

To evaluate the estimated burned area from the satellite detec-
tions, fire size was also estimated by the USFS’ NIROPS 

program, which maps large incidents in the United States 
using both dedicated USFS airborne IR sensors (Greenfield 
et al. 2003) and privately owned sensors flown under contract. 
Both USFS and contractor flights were used in the present 
study, collectively referred to as NIROPS, but are denoted 
separately in figures. Area estimates included in daily fire 
perimeter maps from NIROPS consist of the outer NIROPS 
polygon, which does not include interior areas like unburned 
islands. NIROPS data are the best available data for detecting 
‘daily’ burn perimeters, when available. Even though ICS-209 
reports and GeoMAC perimeters are the best estimates of the 
total burned area of the fire scars, the daily data can be vastly 
under- and overestimated. Further details about all datasets 
can be found in the supplementary material. 

Fire burned area algorithm 

Identification of fire perimeter and selection of 
satellite pixels 

VIIRS data for a fire were filtered within a bounding box 
based on the latitude/longitude range of the final map from 
NIROPS (Fig. 2). This range was chosen to ensure that the 
entire area of the fire was included in our estimation, as well 
as providing a consistent framework to evaluate across data-
sets. Some fires required further geographic filtering using a 
polygon bounding box. This secondary filtering was needed 
when there were other incidents or spot fires within the initial 
bounding box to prevent their inclusion in the area estimates. 
Spot fires within 0.1° of the fire and included on the NIROPS 
perimeter map were not filtered out, as they are reasonably 

Table 1. List of analysed fires and key information: start date, date of final NIROPS flight with used data, final ICS-209 area and if the fire was 
sampled by FIREX-AQ.        

Fire name Location Start date Date of last NIROPS flight  
with used data 

Final burned 
area (ha) 

FIREX-AQ 
sampled fire   

204 Cow OR 9 August 2019 8 September 2019 3912 Yes 

Granite Gulch OR 28 July 2019 7 September 2019 2246 Yes 

Shady ID 10 July 2019 2 September 2019 2543 Yes 

Williams Flats WA 2 August 2019 20 August 2019 17 986 Yes 

Pedro Mountain WY 24 August 2019 3 September 2019 9472 No 

Walker CA 4 September 2019 18 September 2019 22 099 No 

Bobcat CA 5 September 2020 7 October 2020 46 942 No 

Cameron Peak CO 13 August 2020 20 November 2020 84 544 No 

Creek CA 4 September 2020 10 November 2020 153 738 No 

Dolan CA 18 August 2020 27 September 2020 50 554 No 

East Troublesome CO 14 October 2020 18 November 2020 78 432 No 

Holiday Farm OR 7 September 2020 7 October 2020 70 169 No 

Lake CA 12 August 2020 28 August 2020 12 581 No 

Riverside OR 8 September 2020 8 October 2020 55 868 No   
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close to the main body of the fire. This further filtering 
increases accuracy of the area estimate by removing close 
active-fire detections that are not from the main incident. 
This smaller bounding box was not applied to all fires, but 
only when needed, and was applied to both VIIRS and ABI 
detections. The filter was applied to the Cameron Peak, Creek, 
Holiday Farm and Riverside fires. 

Once spatially filtered, active-fire detections from both 
SNPP and NOAA-20 are accumulated beginning from 

00 UTC on the day the fire began to the end of the day of 
the last NIROPS flight used for the fire. There are cases 
where fires continued to have active-fire detections after 
the last NIROPS flight, but we chose to end our estimations 
when the NIROPS flights ended. There are also cases with 
NIROPS flight when there were no new active-fire detec-
tions since the previous NIROPS flight. Those NIROPS flights 
were removed when evaluating the algorithm but are 
included in time series plots. 

Calculation of fire area from VIIRS active-fire 
detections 

Area is calculated for every overpass by drawing a polygon 
around the accumulated detections. This polygon is drawn 
using MATLAB’s boundary function. The algorithm consists 
of constructing an alpha shape (Edelsbrunner et al. 1983) 
from the specified points and then determining which points 
lie on the boundary. The convexity of the hull derived from 
the accumulated detections is changed by modifying the 
shrink factor, an input parameter to the boundary function 
that controls the radius used to build the alpha shape. The 
shrink factor ranges from 0 to 1, with 0 resulting in a convex 
hull and 1 providing the most compact single polygon 
around the detections, which is generally non-convex (The 
MathWorks, Inc 2022). Non-convexity allows the exclusion 
of unburned area around the generally irregular fire 
perimeters. 

Application of ABI FRP data to refine temporal 
evolution 

Once the VIIRS detections have been processed, and area 
decreases have been filtered out and combined by overpass 
time, a continuous, hourly time series can be created with 
hourly ABI FRP data. Averaged ABI FRP estimates, with 
units of megawatts, are integrated over the entire life of 
the fire to create a cumulative FRP estimate, also known as 
Fire Radiative Energy (FRE). The FRE is then used to inter-
polate between VIIRS area estimates using: 

t v t f t f t
f t f t

v t

f t f t
f t f t

sat_area( ) = ( 1) × ( ( 1) ( ))
( ( 1) ( 2))

+ ( 2)

× ( ( ) ( 2))
( ( 1) ( 2))

(1)  

where sat_area corresponds to the combined burned area 
estimates in hectares, v corresponds to the VIIRS area esti-
mates in hectares, and f corresponds to the ABI FRE in mega-
joules. The times t, t1 and t2 are the current time, closest 
overpass before the current time and closest overpass after the 
current time, respectively. The equation is run for each hour 
during the life of the fire and for 10 shrink factor values 
ranging from 0.1 to 1. When FRP is constant with time or 
there are no FRP measurements, a linear interpolation is used 

Williams Flats NOAA-20 accumulated detections, S = 1.0

Williams Flats SNPP accumulated detections, S = 1.0

(a)

(b)

Accumulated detections
NIROPS perimeter
S = 1.0

Accumulated detections
NIROPS perimeter
S = 1.0

48.0°N
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Fig. 2. Accumulated active fire detections (black circles) compared 
with final NIROPS heat perimeters (red solid line) and most compact, 
S = 1.0, shrink factor (blue dashed line) for the Williams Flats Fire (a, b) 
for NOAA-20 (top) and SNPP (bottom).   
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to estimate area between the overpasses. To examine how 
well the model predicts both accumulated burned area and 
change in burned area, the normalised mean bias (NMB), 
normalised mean error (NME), mean absolute error (MAE), 
root mean square error (RMSE) and mean bias (MB) were 
calculated (Willmott and Matsuura 2005; Eder and Yu 2006). 

Results 

The combined time series from VIIRS and ABI were evalu-
ated, using NIROPS as a reference, in two ways: by total 
accumulated burned area and by change in burned area 
between NIROPS flights. Flight times were converted from 
local time to UTC, and rounded to the nearest hour, for 
easier comparison with accumulated burned area. The latter 
approximately corresponds to daily burned area where 
NIROPS flew on consecutive days. Obtaining strong agree-
ment for both metrics ensures that the algorithm is not only 
estimating true fire size well, but that it is accurately captur-
ing changes in fire behaviour, which may improve 
bottom–up emissions estimates as they generally use daily 
changes in burned area. 

Spatial agreement 

Fig. 2 shows accumulated fire detections against the final 
NIROPS heat perimeter for the Williams Flats Fires, as well 
as the boundary with a shrink factor of 1 (the most compact 
polygon). The fire shows good spatial agreement between the 
active-fire detections and NIROPS perimeter. There are some 
interior areas of another large 2019 fire, the Walker Fire, 
surrounded by VIIRS detections and they are included in 
our burned area estimations, but did not burn according to 
NIROPS (Supplementary Fig. S14). Despite these unburned 
‘islands’, which are a known problem for all burned area 
estimations (Kolden et al. 2012; Hall et al. 2020) that worsens 
with coarser-resolution data, the outer VIIRS perimeter for 
the Walker Fire has good spatial agreement with the final 
NIROPS heat perimeter. Spatial agreement assesses how well 
the filters work to retain only detections from the incident, a 
critical component for accurate burned area estimates. 

For the 204 Cow Fire, a relatively small 2019 fire 
(3912 ha), initial examination of the satellite perimeter 
against the NIROPS perimeter indicated further geographic 
filtering would be necessary (Fig. 3). The NOAA-20 pass on 29 
August at 0900 UTC contains a number of detections in the 
vicinity of the fires deemed to be false, resulting in a large 
overestimation in burned area and an incorrect perimeter. To 
filter out these false detections, detections and boundaries 
from both VIIRS sensors were used to find a common set of 
points. Once detections were accumulated for both SNPP and 
NOAA-20, boundaries were created for both sets. The bound-
ary from each satellite was then applied to the other set of 
detections; the SNPP boundary was applied to the set of 

NOAA-20 detections and vice versa, as shown in Fig. 3. 
With this additional filtering, agreement between the satellite 
and NIROPS perimeter was greatly improved. 

The accumulated fire detections with the final NIROPS 
perimeter and most compact shrink factor for three of the 
2020 fires, the Dolan, Lake and Riverside Fires, are shown in 
Supplementary Figs S29, S38, S41. Like 2019, there are fires 

NOAA-20 detections inside the SNPP boundary

SNPP detections inside the NOAA-20 boundary

(a)

(b)

Detections inside boundary
Detections outside boundary
SNPP boundary

Detections inside boundary
Detections outside boundary
NOAA-20 boundary

44.3°N

44.2°N

44.3°N

44.2°N

1 0 1 2 3 4 5 km

1 0 1 2 3 4 5 km

118.5°W 118.4°W

118.5°W 118.4°W

Fig. 3. Map of accumulated detections for NOAA-20 (a), and SNPP 
(b) for the 204 Cow Fire. Detections used to estimate area (red circles) 
from filtering algorithm based on final perimeter (black dashed line) for 
each satellite are shown. Detections filtered out are in blue.  
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where the algorithm has limitations. The 2020 Lake Fire 
that occurred in the Angeles National Forest is a prime 
example of cloud cover affecting the detection of active 
burning (Incident Information Web Services 2020). Owing 
to persistent cloud cover early in the fire, some active-fire 
detections were missed, leading to large underestimations 
(~3800 ha max.) in burned area that affected the subse-
quent area estimations (Fig. S39). The accumulated burned 
area is persistently low-biased compared with NIROPS, and 
there are small (R < 0.3) to negative R values for the change 
in burned area (Fig. S40). We note that although clouds 
decrease algorithm skill for the Lake Fire, the algorithm is 
capable of overcoming cloud cover, such as in the 204 
Cow Fire. 

Accumulated burned area 

Figs 4, 5 show the combined NOAA-20 and SNPP VIIRS time 
series (multicoloured symbols for different shrink factors 
from 0.5 to 0.8), the accumulated FRP (green line) and the 
burned area estimate for the 0.5 shrink factor (black dashed 
line) for the 204 Cow, Walker and Williams Flats (Fig. 4) 
and Dolan, Lake and Riverside (Fig. 5) Fires. Area estima-
tions from SNPP and NOAA-20, multicoloured symbols for 
four shrink factors (S = 0.5 to 0.8) shown, visually agree 
well with the values and trend of the NIROPS (black circles) 
estimates for the Williams Flats and 204 Cow Fires. The 
estimations mainly agree with the trend for the Walker 
Fire but overestimate the final NIROPS area by 14–32% 
(~3000–7800 ha), depending on the shrink factor, owing 
to unburned islands being included in the area estimated. 
Errors in burned area for the 204 Cow and Williams Flats 
Fires range from −2.2 to 9.6% (−87 to ~400 ha) and −3.5 
to 18% (~−600 to ~3300 ha). 

The top of Supplementary Figs S3, S16, S19, S31, S40, 
S43 compares the NIROPS area estimations with the esti-
mated accumulated burned area at the same time and shows 
the correlation coefficient for four of the mid-range shrink 
factors (0.5, 0.6, 0.7 and 0.8). All of the fires show high R 
values (>0.98) for accumulated burned area for those 
shrink factors. Having very high positive correlation 
coefficient values for all of the fires makes sense, as a strong 
relationship between satellite estimated accumulated 
burned area and NIROPS perimeter areas over time is 
expected, regardless of high or low biases that may arise 
from detection mapping issues. The high and low biases for 
fires like the Walker and Lake Fires become evident when 
looking at the correlation plots. 

Error metrics for all fires with linear interpolations 
between the VIIRS overpasses only can be found in the sup-
plement (Supplementary Tables S1–S3). For most fires, there 
is minimal change between the calculated error metrics with-
out the inclusion of the ABI data (R = 0.52 vs 0.50 for Pedro 
Mountain). NIROPS flights and VIIRS night-time overpasses 
tend to occur at similar times of typically decreased fire 

activity. This will yield similar results between the methods 
with and without the inclusion of ABI FRP when NIROPS and 
VIIRS area estimates are compared. 

Change in burned area 

The bottom of Supplementary Figs S3, S16, S19, S31, S40, S43 
compares change in burned area estimates for all six fires, 
with a variety of results. The Dolan, Riverside, Walker and 
Williams Flats Fires all have high correlation coefficients 
(R ≥ 0.96), whereas the 204 Cow and Lake Fires have much 
lower, and even negative, correlation coefficients (R < 0.5). 
The 204 Cow and Lake Fires are both <13 000 ha in size 
compared with the other four being >22 000 ha, indicating a 
potential dependence on fire size for accuracy of the change 
in burned area estimates. These values do not necessarily 
mean that the algorithm does a poor job at predicting change 
in burned area as many factors can impact correlation values 
(Aggarwal and Ranganathan 2016). 

Additional error metrics 

Accumulated burned area 
Table 2 compares error metrics for the Williams Flats Fire 

across all shrink factors from 0.1 to 1. Although the range in 
the errors across the shrink factors is small, there is not one 
shrink factor that is universally better than the others. 
However, shrink factors in the range of 0.7–1.0 (the most 
compact shrink factors) tend to produce the smallest errors, 
<6% for NMB and <11% for NME for the Williams Flats Fire. 
This trend applies with the other error metrics calculated as 
well, with the smallest MB, RMSE and MAE values in the 
S = 0.7 to 1.0 range, with most being the smallest at S = 0.8. 

The algorithm performs similarly across a range of fire 
sizes, and sensitivity to the shrink factor is small relative to 
other errors. Table 3 compares all 2019 fires at the 0.8 shrink 
factor, more compact than the default setting of 0.5. The NMB 
and NME for accumulated burned area range from −23.7 to 
19.4% and 6.5 to 23.7% respectively. Excluding the Granite 
Gulch and Walker Fires, the range of NMB and NME drops to 
~±6 and <12%, respectively, with an overall slight under-
prediction. The NMB and NME values are similar to other 
error values from previous studies (Oliva and Schroeder 
2015), with the exception of the Granite Gulch and Walker 
Fires, which have slightly larger errors, (−4.1 to 1.4% for 
NMB and 6.5–11.9% for NME) but within the error range 
(<~50%) seen in Oliva and Schroeder (2015). 

Statistics for 2020 fires are slightly worse than for 2019. 
Excluding the Lake Fire, the range of NMB and NME is −10 to 
+13% and 2 to <14%, respectively for the S = 0.8 shrink 
factor. Three of these fires (Riverside, Holiday Farm and Creek) 
show NBM values larger than 10%. The Riverside Fire shows 
an overestimation due to spot fires near the fire (Table 4), 
but the change in burned area error metrics shows an 
underestimation for most shrink factors. Holiday Farm pres-
ents overestimations due to spotting as well (Fig. S24), while 
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the Creek Fire has overestimations due to large irregulari-
ties in the fire perimeter and large unburned islands. The 
Lake Fire has larger errors than the other 2020 fires (~40% 
NME), due to previously described complications with 
cloud cover. Despite some large errors, the consistency 
across fire size shows the algorithm can handle both very 
large and small fires well. 

Change in burned area error metrics 
There is less of an identifiable trend in the 2019 change 

in burned area error metrics (Table 3). Larger spread is 
expected as uncertainty and error are introduced when                 

taking the difference between times, but the range of values 
for NMB (from approximately −18 to +50%) and NME 
(approximately 30–73%) is large. These large spreads 
show the error ranges widely and appears to be independent 
of fire size. For instance, while the two smallest fires have 
the smallest NMB values, the Walker Fire has a smaller 
NMB than the Williams Flats or Pedro Mountain Fires 
(which are smaller in size) for change in burned area. 
Although the Walker Fire has the worst skill for accumu-
lated burned area, we note that fire growth estimates can 
still have skill even when the algorithm overpredicts 
accumulated burned area. 

Table 2. Accumulated burned area error metrics for the Williams Flats Fire for all shrink factors.              

S = 0.1 S = 0.2 S = 0.3 S = 0.4 S = 0.5 S = 0.6 S = 0.7 S = 0.8 S = 0.9 S = 1.0   

Mean bias (ha)  1920.1  1548.7  1263.1  949.2  787.4  593.3  447.9  107.4  −193.0  −324.3 

Normalised mean bias (%)  24.7  19.9  16.2  12.2  10.1  7.6  5.8  1.4  −2.5  −4.2 

Normalised mean error (%)  24.8  20.5  17.3  13.8  11.8  10.0  9.4  10.8  9.9  9.7 

RMSE (ha)  2779.5  2253.6  1871.5  1510.0  1320.9  1103.3  984.8  999.1  873.8  855.2 

Mean absolute error (ha)  1927.1  1592.5  1344.9  1070.8  920.8  775.7  730.5  843.7  772.7  752.9   

Table 3. Error metrics for all 2019 fires at the S = 0.8 shrink factor.          

Fire Final 
size (ha) 

Normalised 
mean 

bias (%) 

Normalised 
mean 

error (%) 

Correlation 
coefficient 

Change in 
burned area 
normalised 

mean bias (%) 

Change in 
burned area 
normalised 

mean error (%) 

Change in 
burned area 
correlation 
coefficient   

204 Cow  3912  −2.8  6.5  0.98  5.5  65.3  0.32 

Granite Gulch  2246  −23.7  23.7  0.99  −17.9  43.8  0.88 

Shady  2543  −4.1  7.1  0.97  9.9  53.5  0.77 

Williams Flats  17 986  1.4  10.8  0.98  29.3  29.8  0.99 

Pedro Mountain  9472  −4.0  11.9  0.98  50.2  72.8  0.51 

Walker  22 099  19.4  19.4  0.98  13.7  48.2  0.94   

Table 4. Error metrics for all 2020 fires at the S = 0.8 shrink factor.          

Fire Final 
size (ha) 

Normalised 
mean 

bias (%) 

Normalised 
mean 

error (%) 

Correlation 
coefficient 

Change in 
burned area 
normalised 

mean bias (%) 

Change in 
burned area 
normalised 

mean error (%) 

Change in 
burned area 
correlation 
coefficient   

Bobcat  46 942  −2.8  9.3  0.99  −11.0  39.4  0.93 

Cameron Peak  84 544  6.9  7.1  0.99  7.1  54.1  0.90 

Creek  153 738  12.1  12.1  0.84  −1.3  212.6  0.26 

Dolan  50 554  0.9  2.8  0.99  −1.7  35.0  0.96 

East Trouble-some  78 432  −9.7  12.8  0.98  −4.7  34.2  0.88 

Holiday Farm  70 169  12.5  12.5  0.99  1.8  27.5  0.94 

Lake  12 581  −39.6  39.6  0.98  −21.7  64.4  −0.14 

Riverside  55 868  12.2  12.2  0.98  −7.0  33.8  0.98   
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Excluding the Creek Fire, the 2020 fires have similar 
error values to 2019 fires (NMB, −22 to 8%, NME 33 to 
64%, Table 4). In the case of the Creek Fire, previously 
described irregularities in fire perimeter led to large over-
estimations of true fire size that also impacted the change in 
burned area errors. There is also a much larger range 
(−0.14 to 0.99) of correlation coefficients between the 
algorithm estimated change in burned area and the 
NIROPS change in burned area (Table 4). This is much 
larger than the range of accumulated burned area correla-
tion coefficients for the 2020 fires (0.85–0.99), but the NMB 
and NME ranges are comparable with the 2019 ranges. The 

algorithm has a tendency to slightly underpredict at this 
shrink factor (S = 0.8), with negative NMB values for all 
fires except for Cameron Peak and Holiday Farm. 

Comparison with other datasets 
The results of the algorithm for Williams Flats can be 

evaluated against the burned area estimates the FIREX-AQ 
Fuel2Fire team performed (https://www-air.larc.nasa.gov/ 
cgi-bin/ArcView/firexaq?ANALYSIS=1#SOJA.AMBER/). 
MODIS and VIIRS active-fire detections were used to esti-
mate daily burned area by assuming an instrument resolu-
tion footprint of 1 km and 375 m respectively, and then 
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removing overlapping areas, similarly to the methods of  
Oliva and Schroeder (2015) and allowing comparison 
between different methods with similar inputs. Area is accu-
mulated over every local day, and time is then converted to 
UTC for comparison. For the Williams Flats Fire, there is a 
strong correlation (R = 0.96) between the accumulated 
algorithm burned area estimates and the Fuel2Fire estimates 
(Fig. 6). The strong correlation is seen across the shrink 
factors shown from S = 0.5 to 0.8. The final burned area 
estimates for all fires for the 0.8 shrink factor were also 
compared with the final burned area from ICS-209 reports 
(Fig. 6). There is good agreement (R = 0.99) between the 
algorithm and the ICS-209 reports burned area estimates. 
These results are encouraging as they prove the applicability 
of this method and show that when compared with different 
data, the algorithm-estimated final burned area is usually 
close to that measured in official reports. 

Discussion and conclusions 

We developed a novel algorithm to estimate burned area of 
wildfires from satellite active-fire detections. Using active-fire 
detections from NOAA-20 and SNPP VIIRS data and FRP 
estimates from GOES ABI data, we can generate generally 
accurate hourly burned area estimates of wildfires. Once 
geographically filtered, acccumulated active-fire detections 
visually compare well with the USFS NIROPS airborne- 
derived perimeters. Using polygons of different convexity 
around accumulated fire detections provides a measure of 
uncertainty in the algorithm. Inclusion of unburned islands 
in fire interiors remains an issue for accumulated burned area 
estimates, however. Although there are some manual compo-
nents to this method, in the future, it could be the basis for 
automated techniques and be applied to other regions. 

Larger shrink factors, i.e. more compact polygons, typically 
provide better results as they minimise the inclusion of 
unburned islands and irregular perimeters. Some smaller 
fires, however, have better results with smaller shrink factors 
and less compact polygons, indicating a potential size depen-
dence on shrink factor. There is not one shrink factor that 
minimises all errors universally, but rather the choice of shrink 
factor is driven by the type of error that should be minimised. 
The inclusion of ABI FRP data does not significantly improve 
the algorithm, but does better capture the pronounced diurnal 
cycle of fires, making the estimates more realistic (Mu et al. 
2011; Wiggins et al. 2020; Li et al. 2022). 

Errors (NME) in accumulated burned area for most fires 
are below 14%. Larger underpredictions are found when 
clouds obscure detections at the edge of the final perimeter 
of the fire, whereas large overpredictions occur when the fire 
has unburned islands, spotting or highly irregular fire perim-
eters. Change in burned area results sees a wider spread in 
errors, typically between 30 and 73%, with one outlier over 
200% owing to irregular fire perimeters impacting 

accumulated burned area estimates. Smaller fires, relative 
to other fires in the same season, tend to have smaller NMB 
and NME values. Many of the patterns with fire size and 
corresponding trends in error metrics seen in 2019 are also 
seen in 2020. Correlation coefficients are usually >0.95 for 
accumulated burned area, but more variable for change in 
burned area, with R typically >0.89, but with some R values 
<0.5. When compared with other burned area datasets, both 
the accumulated burned area and final estimated burned area 
perform well, with correlation coefficients >0.96. 

Realistic burned area estimates can improve emissions 
estimations for air quality forecasts, potentially in near-real 
time. Many air quality and emissions models currently rely 
on persistence to forecast burned area, which can lead to 
drastic over- or underestimations in emissions predictions 
(Ye et al. 2021). Burned area estimates from the present 
algorithm can be used to inform better predictions of burned 
area; using methods such as machine learning shows tre-
mendous potential for forecasting fire spread and emissions, 
especially if trained with fire weather and fuels, variables 
that control fire growth and spread (Reid et al. 2015; Jain 
et al. 2020). Recent work shows the uses of ABI FRP to 
predict hourly biomass burning estimates (Wiggins et al. 
2020). When used with near-real time burned area, follow-
ing a similar approach with hourly ABI FRP estimates, 
emissions and air quality forecasts are expected to be 
improved owing to the strong correlation between ABI 
FRP and smoke concentrations (Wiggins et al. 2020). 

Supplementary material 

Supplementary material is available online. 
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