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Abstract Vapor pressure deficit (VPD) is a driver of evaporative demand and correlates strongly with
wildfire extent in the western United States (WUS). Vapor pressure deficit is the difference between saturation
vapor pressure (es) and actual vapor pressure (ea). Because es increases nonlinearly with temperature,
calculations of time‐averaged VPD vary depending on the frequency of temperature measurements and how ea
is calculated, potentially limiting our understanding of fire‐climate relationships. We calculate eight versions of
monthly VPD across the WUS and assess their differences. Monthly VPDs calculated from daily data are 2%–
6% higher, and more accurate, than when calculated from monthly data. Using daily maximum and minimum
temperature, instead of mean, increases VPD by ∼20%, but can overestimate true values depending on how ea is
calculated. These differences do not meaningfully impact correlations with annual wildfire area, however,
suggesting our understanding of historical fire‐VPD relations is not very sensitive to how VPD is calculated.

Plain Language Summary Understanding the relationships between climate and wildfire is crucial,
especially in the western United States (WUS), where wildfire sizes and impacts have increased rapidly in recent
decades. The vapor pressure deficit (VPD), which is a key component of the atmosphere's evaporative demand
and thus an important influence on fuel moisture, is commonly treated as an indicator for fire potential. The
VPD is calculated from temperature and humidity, but if these variables cannot be measured on a second‐by‐
second basis, then calculations of VPD are imperfect estimates. How much does this imprecision matter to our
understanding of fire‐climate relations? Here we show that using time‐averaged temperature and humidity does
indeed cause systematic biases in estimates of monthly mean VPD, and reduces accuracy of month‐to‐month
variability. Despite this, methodological choice had only minimal effects on correlation between annually
averaged VPD and annual wildfire area in the WUS. This suggests that monthly data is sufficient for analyses of
statistical linkages between VPD and annual (or seasonal) area burned, though it is likely that calculation
methods could influence inferred impacts of daily or sub‐daily VPD variations on fire and could produce
meaningful differences in projections of future VPD.

1. Introduction
Atmospheric vapor pressure deficit (VPD), defined as the difference between saturation vapor pressure (es) and
actual vapor pressure (ea), is a critical indicator of atmospheric aridity (Seager et al., 2015). The VPD is a key
metric for understanding how the atmosphere dries fuels, and it has been shown to be closely related to forest
burned in the western United states (WUS) (Abatzoglou & Williams, 2016; Balch et al., 2022; Williams
et al., 2019; Williams, Seager, Macalady, et al., 2014). The es increases exponentially as a function of temperature
via the Clausius‐Clapeyron relation (Figure 1a) and ea is generally derived from either dew point temperature (Td)
or the combination of relative humidity (RH) and es. Although time‐averaged temperature is often used to
calculate es for convenience, this approach underestimates true es since positive temperature excursions drive
larger es responses than do negative ones. Biases in es due to time‐averaged temperature then propagate to biases
in ea if ea is estimated from RH and es. However, it is unclear how our assessments of historical fire‐VPD re-
lationships may be affected by use of monthly mean data, ignoring the diurnal cycle of temperature, or use of
time‐averaged RH to estimate ea, when estimating time‐averaged VPD.
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While previous research has either assessed the relationship between VPD and fire or examined the influence of
calculation method on VPD variability and trends, none, to our knowledge, has analyzed how different VPD
calculation methods may influence the apparent relationship between VPD and wildfire. For instance, Yuan
et al. (2019) demonstrated differences in VPDs calculated from various climate datasets but they did not examine
the effects of estimating VPD from monthly versus daily climate data, or the effects of using average temperature
(Tmean) versus accounting for the diurnal cycle through use of daily maximum and minimum temperatures (Tmax

and Tmin). In addition, Howell and Dusek (1995) found that different VPD calculation methods can lead to
different estimates of evapotranspiration in the United States southern Great Plains, generally consistent with
findings of Abtew and Melesse (2013) in southern Florida. However, how choices among methodologies to
estimate VPD impact our impression of fire‐VPD relationships is still unclear. In particular, VPD is often
calculated using monthly climate data for fire studies (Brey et al., 2021; Grünig et al., 2023; Holden et al., 2018;
Williams, Seager, Berkelhammer, et al., 2014; Williams, Seager, Macalady, et al., 2014), but the non‐linear
response of es to temperature could cause substantial differences in time series of monthly, seasonal, or annual
VPD if daily or sub‐daily data were used instead. This is exemplified in Figure 1b, where we use meteorological
observations from a weather station in northern Arizona to show how the above‐described methodological
choices result in a diversity of estimates of monthly VPD, none correlating perfectly with best‐estimates derived
from hourly data. Therefore, a comprehensive comparison of the effects of using different variables and temporal
resolutions for VPD calculations is needed to better understand the importance of these methodological choices
for analyses of fire‐climate relations.

Here, we evaluate how different methods, including use of daily Tmax and Tmin versus Tmean, use of Td versus RH,
and use of daily versus monthly mean data, affect time series of regionally averaged annual and seasonal VPD,
and whether the degree to which these choices affect our understanding of the fire‐climate relationship in
the WUS.

2. Materials and Methods
2.1. Climate Variables

We acquired daily Tmax and Tmin, Td and RH from the Parameter‐elevation Regressions on Independent Slopes
Model (PRISM) data set (Daly et al., 2021), which is one of the most widely used climate datasets for the
conterminous U.S. with a 4 km resolution. We estimated Tmean as the mean of Tmax and Tmin. For estimates of
daily and monthly mean RH we assumed Td was constant throughout the day and month, respectively. For
calculations of daily VPD from Tmax, Tmin and RH, we estimated daily mean RH to be the average of daily
maximum and minimum RH, which we assumed to co‐occur with Tmax and Tmin, respectively. We also used in‐
situ hourly climate data from the U.S. Climate Reference Network stations (Diamond et al., 2013) to evaluate the
accuracy of monthly VPD estimates, and the VPD calculated from hourly data is treated as “true” VPD in our
study (Figure S1 in Supporting Information S1).

2.2. Fire Data

We utilized the Western US MTBS (Monitoring Trends in Burn Severity)‐Interagency version 2 (WUMI2)
wildfire database (C. Juang & Williams, 2024) from 1984 to 2020, along with the Moderate Resolution Imaging
Spectroradiometer (MODIS) version 6.1 burned area product (Giglio et al., 2021) from 2001 to 2023. Both
datasets include maps of monthly area burned that we gridded to 1 km spatial resolution. For each of 19 Bailey's
ecoregions in the WUS (Bailey, 2016; Figure S2 in Supporting Information S1), we calculated a record of annual
area burned in forested and non‐forested areas (Figures S3 and S4 in Supporting Information S1) for 1984 to 2023,
where the WUMI2 data were used for 1984–2020 and extended through 2021–2023 using MODIS calibrated to
WUMI2. The calibration used the linear relationship betweenWUMI2 andMODIS annual burned area during the
2001–2020 period of overlap. This relationship was applied to MODIS burned area from 2021 to 2023 to obtain
the WUMI‐equivalent burned area during 2021–2023. The reconstructed WUMI burned area from 1984 to 2023
was used in our analysis. To distinguish forest from non‐forest areas we calculated a 1 km grid of fractional forest
coverage from the 250 m map of forest classifications from Ruefenacht et al. (2008).
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2.3. Methods

We used the gridded climate data described in Section 2.1 to produce eight gridded datasets of monthly mean
VPD (Figure S5 in Supporting Information S1). Four were produced directly from the daily climate grids and the
other four were produced from monthly means of the daily grids. Both sets of four VPD calculations were
produced using the same methods, with the exception of one set being calculated from daily data and one being
calculated from monthly. The four methods to calculate VPD are shown in Equations 1–4 (the Clausius‐
Clapeyron formulation to calculate es from temperature was the same in all calculations; Equation 5). In the
first method (VPD1; Equation 1), es is calculated as the average of es at Tmax and es at Tmin (Equations 5–6) and ea
is calculated from Td (Equation 7). The second method (VPD2; Equation 2) differs from VPD1 only in that es is
calculated from Tmean. The third and fourth methods (VPD3 and VPD4), respectively parallel those for VPD1 and
VPD2 except that ea is calculated from es and RH instead of Td (Equations 8 and 9).

VPD1 = es (Tmaxmin) − ea (Td) (1)

VPD2 = es (Tmean) − ea (Td) (2)

VPD3 = es (Tmaxmin) − ea (Tmaxmin,RH) (3)

VPD4 = es (Tmean) − ea (Tmean,RH) (4)

In which,

es(T) = es (T0) × exp(
L
Rw
(
1
T0
−

1
T
)) (T is Tmean or Tmax or Tmin) (5)

es (Tmaxmin) =
es (Tmax) + es (Tmin)

2
(6)

ea (Td) = es (T0) × exp(
L
Rw
(
1
T0
−

1
Td
)) (7)

ea (Tmean,RH) = es (Tmean) ×
RH
100

(8)

Figure 1. (a) Illustration of the relationship between saturation vapor pressure (es) and temperature (T ) based on the Clausius‐Clapeyron relation (ea: ambient vapor
pressure; RH: relative humidity; Td: dew point temperature; and Tmin, Tmean, and Tmax: minimum, mean, and maximum daily temperature), and (b) Scatter plots of eight
versions of monthly vapor pressure deficit (VPD) against “true” VPD calculated from hourly station data from 2008 to 2023 in northern Arizona (location in Figure S1
in Supporting Information S1). Solid lines in (b) represent linear regression fits.
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ea (Tmaxmin,RH) = es (Tmaxmin) ×
RH
100

(9)

Where es (T0)= 6.11 hPa is the saturation vapor pressure at a reference temperature T0 (273.15 K), L (2.5 × 106 J/
kg) is the latent heat of evaporation for water, and Rw (461.52 J/(kgK)) is the specific gas constant for water vapor
(Shaman & Kohn, 2009). After calculating the eight versions of monthly gridded VPD, we produced annual
(calendar‐year) means for VPD‐wildfire correlation analyses. We also produced an alternative annual VPD set
representing just the mean from March–October, as the period beginning in March and ending in late summer or
fall has been shown previously to be when correlations between VPD and annual area burned are strongest in this
region (Abatzoglou & Williams, 2016; Williams, Seager, Berkelhammer, et al., 2014, 2019).

To explore how VPD methodology may affect our interpretation of VPD‐wildfire relationships, we correlated the
eight versions of annual VPD time series against annual burned area for forested and non‐forested areas from
1984 to 2023. As a supplementary analysis we repeated all correlation analyses focusing only on area burned
during May–October, when the vast majority of WUS wildfire area occur, and for these analyses we considered
VPD during the shorter March–October window. In addition to correlation analyses focused on the entire WUS,
we also examined burned area‐VPD relationships for each of the 19 Bailey's ecoprovinces within (Bailey, 2016).
Because of the exponential relationship between VPD and burned area (Juang et al., 2022), we performed log-
arithmic transformation to the burned‐area time series prior to correlation analysis.

3. Results and Discussions
3.1. Comparison of VPD Methodologies

Figure 2 compares the time series of eight versions of mean annual WUS VPD, as well as their standardized
counterparts. Different VPD calculation methods have large effects on the mean annual values (Figures 2a and 2b)
but negligible effects on the relative magnitudes of annual variations in mean VPD, as represented by stan-
dardized time series with identical mean and variance (Figures 2i and 2j). VPDs calculated using Tmax and Tmin for
es (VPD1 and VPD3) generate significantly (p < 0.05) higher values compared to those using Tmean (VPD2 and
VPD4) (Figures 2c and 2d). VPD1 exhibits the largest magnitude, followed by VPD3, VPD2 and VPD4, with
VPD1 being 31.8% and 29.5% higher than VPD4 (Figures 2a and 2b).

The station analysis indicates no substantial improvement in correlation with “true” monthly means of VPD
(calculated from hourly data) when estimating monthly VPD from monthly means of Tmin and Tmax instead of
Tmean, or Td instead of RH (∆R2 < 0.03). On the other hand, all four versions of monthly VPD estimates that are
based on monthly mean data exhibit systematic biases in mean VPD: Tmax, Tmin, and Td (VPD1(month)) over-
estimates true VPD by ∼11% whereas VPD2–4(month) underestimate true VPD by 7%–17% (Figures S6a–S6d in
Supporting Information S1).

The VPDs estimated from daily climate are significantly higher than those from monthly climate (Figures 2a–b
and 2e–h), consistent with the station results in Figure 1b and Figure S6 in Supporting Information S1. Our
analyses of hourly station data indicate that monthly means of VPD based on daily climate are better correlated
with true values, with R2 higher than 0.98 for all four calculation methods (Figures S6e–S6h in Supporting In-
formation S1). However, use of daily data further enhances the positive bias found when VPD is estimated from
Tmax, Tmin, and Td (VPD1(month) and VPD1(day)) (Figure 1b, Figure S6e in Supporting Information S1). The other
three methods of estimating VPD from daily data (VPD2–4(day)) reduce the magnitudes of the negative biases
caused by use of monthly data. Overall, use of daily Tmax, Tmin and RH (VPD3(day)) yields the best agreement with
true monthly mean VPDs in terms of minimal bias and largest R2 (Figure S6g in Supporting Information S1). We
observe the same general results when we evaluate time series of monthly VPD and March–October mean VPD
(Figures S7–S8 in Supporting Information S1).

Although the eight versions of WUS VPD have different means (and variances), the time series of mean annual
WUS VPD are all very well correlated with each other (R2 > 0.98). In Figures 2i and 2j, we show that when the 8
VPD time series from Figures 2a and 2b are standardized to have a mean of zero and standard deviation of one,
they are nearly identical in terms of interannual variability and trend. In all cases, we calculate that trends in
temperature and humidity (mostly warming) caused WUS mean annual VPD to increase by about two standard
deviations from 1984 to 2023. This is also true when VPD during just March–October is considered (Figure S8 in
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Figure 2.
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Supporting Information S1). In addition, the spatial patterns of mean VPD across WUS are extremely similar
among the eight versions (Figures S9a–S9j in Supporting Information S1) with generally small variation among
each other (Figures S9k–S9l in Supporting Information S1), indicating that our finding of high temporal cova-
riability among the 8 VPD versions also extends to spatial covariability.

3.2. Fire‐VPD Relationships

As would be expected from the above finding that standardized time series ofWUSVPD are highly similar across
the 8 VPDmethods, we find that correlations betweenWUS annual VPD and wildfire area are insensitive to VPD
methodology (Figure 3). Correlations are very strong (R2 = 0.85–0.87) for forest‐fire area (blue dots) and
considerably weaker (R2= 0.31–0.33) in non‐forested regions (orange dots), likely due to fuel limitations in many
non‐forested areas. These results are consistent when we alternatively consider May–October burned area versus
March–October VPD, with the exception that correlations in non‐forested areas are somewhat reduced
(R2 = 0.24–0.26) (Figure S10 in Supporting Information S1).

We further investigate fire‐VPD relationships across the 19 WUS ecoprovinces. In each ecoprovince, we show
how annual VPD correlates with wildfire area within forested and non‐forested areas (Figure 4). Consistent with
the all‐WUS results, the method used to calculate VPD had minimal effect on correlations between regional
annual area burned and VPD (Figure 4). Across ecoprovinces, forested areas consistently exhibited higher cor-
relations than non‐forested areas. Area‐weighted mean ecoprovincial correlations ranged from 0.56 to 0.57
(R2 = 0.31–0.33) across the 8 VPD methods for forested areas and from 0.20 to 0.21 (R2 = 0.04–0.05) for non‐
forested areas. Consistent with the interpretation that more positive correlations between VPD and area burned are
promoted by fuel availability, the weakest correlations for non‐forested regions generally occur in desert areas
with relatively sparse vegetation coverage and areas where human population and land use may strongly limit the
potential for large wildfires. These ecoprovince correlation results were essentially unchanged when we
considered the alternative temporal windows of March–October for VPD and May–October for area burned
(Figure S11 in Supporting Information S1).

4. Conclusions
Prior work has established a strong relationship between wildfire activity in the western United States (WUS) and
the atmospheric VPD. However, VPD responds non‐linearly to temperature and therefore interpretations of fire‐
VPD relationships could be sensitive to the temporal resolution of the temperature data used as well as whether
ambient vapor pressure is derived from dew point (Td) or RH. Here, we calculated eight versions of VPD to test
the effects of (a) using daily versus monthly climate data, (b) accounting for the diurnal cycle through use of daily
maximum and minimum temperature (Tmax and Tmin, respectively) versus use of mean temperature (Tmean), and
(c) use of Td versus RH. First, considering weather stations where hourly data are available to calculate the best
estimates of true VPD, we find that among the 8 methods to estimate monthly means of VPD, the method that uses
daily measures of Tmax, Tmin and RH yields values that are most closely aligned with true VPD. Methods that rely
on monthly mean data or neglect the diurnal temperature cycle generally underestimate true VPD, though use of
Tmax and Tmin in combination with Td tends to overestimate VPD.

Despite important differences in magnitude and variability, the 8 versions of monthly VPD are extremely well
correlated in time and space. That is, including additional temporal information through use of daily versus
monthly data, or by accounting for the diurnal cycle in temperature through use of Tmax and Tmin, has only a slight
influence on relative variations in monthly, seasonally, or annually averaged VPD. Because all methodological
choices lead to nearly identical monthly, seasonal, or annual time series of regionally averaged VPD (after
differences in means and variances are standardized), correlations between VPD and WUS wildfire area from
1984 to 2023 are insensitive to the VPD method used.

Figure 2. (a–b) Annual time series of the 8 calculations of WUS mean vapor pressure deficit (VPD) from 1984 to 2023. “Monthly” and “Daily” refer to VPDs calculated
from monthly and daily means, respectively. The numbers in parentheses in (a–b) represent mean values. Box plots of (c–d) Kruskal‐Wallis test (Kruskal &
Wallis, 1952), and (e–h)Wilcoxon signed‐rank test (Wilcoxon, 1992) for eight versions of annual VPD time series. The elements of the boxes represent individual years
in the VPD time series shown in (a–b). An asterisk (*) indicates significant differences (p < 0.05). (i–j) Annual time series of standardized VPDs, scaled to mean of 0 and
standard deviation of 1.
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Figure 3. Scatter plots of annual burned areas (log10) versus the eight annual vapor pressure deficit (VPD) versions for forest and non‐forest areas in theWUS from 1984
to 2023. Blue and orange: forest and non‐forest, respectively. Regression lines: linear fits. VPD is calculated from (a–d) monthly and (e–h) daily data.

Figure 4. Pearson's correlation between annual burned area and vapor pressure deficit in 19 Bailey's ecoprovinces, calculated and colored separately for forested and
non‐forested areas within each ecoprovince. Numbers in the lower‐right: area‐weighted mean correlation across ecoprovinces for forest (non‐forest). The weighted area
average was obtained using the cosine of latitude. VPDs in (a–d) and (e–h) are calculated from monthly and daily data, respectively. (i–j) Difference between the two
overlying rows: VPD(month) minus VPD(day). The forested area (where forest fraction is greater than 0.5) is indicated by dark green stippling.
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Importantly, the sensitivity of individual fire events is not limited only to climate conditions averaged over
timescales of month and longer (e.g., Balch et al., 2022), so there is surely unique value for daily or sub‐daily VPD
data in research on fire‐climate relations. Further, even though time series of monthly, seasonal, or annual VPD
are highly correlated regardless of method, their differences in terms of means and variability are likely important
in other fire‐related research applications that go beyond the simple correlation analyses explored here. For
example, estimates of atmospheric evaporative demand (e.g., the Penman‐Monteith equation) used in water‐
balance calculations (Howell & Dusek, 1995) and hydrological modeling are sensitive to errors in the back-
ground mean climate. As such, biases in background mean VPD due to methodological choice are likely to cause
biases in calculations of soil moisture balance or fuel moisture. We recommend VPD3(day), which uses daily Tmax,
Tmin, and RH, because this method led to the strongest agreement with true monthly mean VPD at WUS weather
stations (Figure S6 in Supporting Information S1). The combination of Tmax, Tmin and Td in our study also has
relatively small bias, and a previous study showed that this combination yields the most accurate VPD estimate in
the semi‐arid region of the Southern High Plains (Howell & Dusek, 1995). We also demonstrate that monthly
meteorological data can be sufficient for VPD estimation when analyzing relationships with the annual burned
areas, which can be beneficial for regions lacking high time‐resolution data. In addition, although we found fire‐
VPD correlations to be insensitive to VPD methodology, it is likely that future climate change will drive dif-
ferential rates of daytime versus nighttime warming, or changes to the distribution of daily mean temperatures or
humidities, potentially causing important divergences among estimates of future VPD trends. This could cause
VPD‐based projections of future wildfire activity to be sensitive to VPD method even if historical VPD‐fire
relationships were not. Sensitivity of future inferred VPD trends to the calculation method should be the topic
of future research.

Data Availability Statement
TheWUMI wildfire database can be obtained at DRYAD (C. Juang &Williams, 2024). The MODIS v6.1 burned
area is available at NASA's Earthdata Archive (Giglio et al., 2021). Bailey ecoprovince boundaries can be found
at the U.S. Department of Agriculture (Bailey, 2016). The fractional forest coverage map is obtained from
Ruefenacht et al. (2008). PRISM data can be downloaded from https://prism.oregonstate.edu/. Climate moni-
toring station data are from the U.S. Climate Reference Network (USCRN) (https://www.ncei.noaa.gov/access/
crn/).
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