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ABSTRACT
Despite widespread concern over increases in wildfire severity, the mechanisms underlying this trend remain unclear, ham-
pering our ability to mitigate the severity of future fires. There is substantial uncertainty regarding the relative roles of extreme 
weather conditions, which are exacerbated by climate change, and forest management, in particular differences between private 
industrial timber companies and public land agencies. To investigate the effects of extreme weather and forest management on 
fire severity, we used light detection and ranging (LiDAR) data to characterize pre-fire forest structure across five large wildfires 
which burned 460,000 ha in the northern Sierra Nevada, California, USA. We found that the odds of high severity fire occurrence 
in these fires were 1.45 times higher on private industrial land than in publicly owned forests, an effect equivalent to a three 
standard deviation decrease in fuel moisture. Next, we quantified the relationships between key forest structure metrics and 
the probability of high severity fire, as well as how these relationships were modified by extreme weather. We found that dense, 
spatially homogeneous forests with high ladder fuels were more likely to burn at high severity. Extreme weather magnified the 
effect of density, suggesting that treatments which remove overstory trees are especially important in extreme conditions. Forests 
managed by private industry were more likely to be dense, spatially homogeneous, and contain high ladder fuel loads than pub-
licly owned forests, offering a potential explanation for the increase in high-severity fire occurrence on private industrial land. 
Overall, these results illustrate the need for comprehensive forest management to mitigate fire severity in a warmer future.

1   |   Introduction

Widespread increases in the size, frequency, and severity of 
wildfires over the past several decades threaten ecological and 
social systems both in the western United States and globally 
(Abatzoglou and Williams  2016; Burke et  al.  2021; Parks and 
Abatzoglou  2020; Steel et  al.  2018). The proliferation of high-
severity fire, in which more than 95% of overstory trees are 

killed (Parks et al. 2016; Parks and Abatzoglou 2020), is partic-
ularly concerning because many forest types do not regenerate 
following complete or near-complete overstory mortality (Coop 
et al. 2020; Davis et al. 2019). As a result, extensive high-severity 
fire can spur conversion to non-forest ecosystem types such as 
shrublands, leading to loss of wildlife habitat (Jones et al. 2016) 
and reduced carbon sequestration potential (Coop et al. 2020). 
Even in intensively managed forests where active reforestation 
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is more likely, high-severity fire and associated fire behavior 
pose a significant hazard to timber resources, water quality, for-
est carbon, and human health and safety (Bousfield et al. 2023; 
Reid et al. 2016).

There is significant uncertainty regarding the causes of recent 
increases in high-severity fire incidence. Though forest man-
agement and extreme weather are known to affect severity, 
the relative importance of these two drivers is hotly debated in 
both scientific journals (Bradley et al. 2016; Miller et al. 2012; 
Odion et  al.  2004; Peery et  al.  2019) and the public sphere 
(Hudson  2011). Moreover, while there is widespread agree-
ment that climate change will raise high-severity fire risk by 
fostering more extreme weather conditions (Abatzoglou and 
Williams 2016; Parks et al. 2016), there is less agreement over 
which forest management practices most strongly affect severity, 
or whether the effects of forest management are more or less im-
portant under extreme weather conditions (Bradley et al. 2016; 
Lydersen et al. 2017; Lyons-Tinsley and Peterson 2012).

Much of the debate surrounding forest management's role in 
fostering or mitigating high-severity fire centers on differences 
between private industrial timber companies and public land 
management agencies such as the United States Forest Service 
and National Park Service (Schwartz et al. 2020). Forests man-
aged by private industry are typically associated with more 
intensive plantation forestry (Koontz et  al.  2020; Zald and 
Dunn  2018), which is employed to maximize sustainable tim-
ber production (Sedjo 1999). However, the resulting even-aged 
structure tends to be relatively homogeneous with greater over-
all fuel continuity (Zald and Dunn  2018), characteristics that 
contribute to more extreme fire behavior and higher fire sever-
ity (Francis et  al.  2023). In contrast, public land management 
agencies must balance multiple objectives in addition to timber 
production, such as recreation, rangeland management, and 
wildlife conservation. Moreover, these agencies are subject to 
greater public scrutiny and litigation, generally resulting in less 
intensive forest management (Collins et  al.  2017; Mooney and 
Zavaleta 2016). Because of this and a long-established policy of 
fire removal from fire-adapted forests, publicly managed forest-
land is commonly overly dense and fuel-laden, which also con-
tributes to extreme fire behavior (Starrs et al. 2018).

Recent research has begun to shed light on the relationship be-
tween management and fire severity. For example, an analysis 
of 154 wildfires across the state of California found that the 
odds of burning at high severity were 1.8 times higher in pri-
vate industrial forests than on public land (Levine et al. 2022), 
corroborating the findings of a previous single-fire study (Zald 
and Dunn 2018). However, we have little understanding of the 
mechanisms driving increased severity on private industrial 
land, hampering our ability to effectively mitigate fire severity in 
the future. Moreover, the fires in these studies occurred in prior 
decades, when the effects of climate change were markedly less 
pronounced (Flannigan et al. 2009). It remains unclear whether, 
in the new era of “mega-fires,” these results will hold, or if the 
effects of extreme weather overwhelm the influence of forest 
management.

The northern Sierra Nevada, California, USA, embodies many 
of the broader trends in wildfire occurrence and severity and 

provides a unique opportunity to investigate the drivers of high 
severity fire. The area contains a patchwork of private industrial 
and public ownership typical of the western USA (Figure  1), 
and in just 3 years between 2019 and 2021, 70% (4595 km2) of 
the area (as defined by the boundaries of the Plumas National 
Forest, California, and adjacent private land) burned in five 
large fires, 39% (2527 km2) of it at high severity (Figure 1). At 
the center of this unprecedented period was 2021's Dixie Fire, 
the largest single fire in California's recorded history, burning 
just under 400,000 ha of public and private lands (Figure 1).

In 2018, 1 year before the first of these fires started, the US Forest 
Service collaborated with the United States Geologic Survey 
(USGS) and the National Aeronautics and Space Administration 
(NASA) to collect airborne light detection and ranging (LiDAR) 
data across the Plumas National Forest and adjacent private 
lands. These LiDAR data were used to map locations of individ-
ual trees > 4-m in height. The result is a detailed pre-fire charac-
terization of forest structure, which allowed us to investigate not 
only differences in high-severity fire incidence between private 
industrial and public lands, but also the mechanisms underlying 
these differences.

Here we leverage this high-fidelity dataset to investigate three 
questions: (1) Is the incidence of high-severity effects in these 
recent wildfires greater on private industrial or public land? 
(2) Which forest structure, climate, and spatial characteristics 
are associated with high-severity fire, and how are these rela-
tionships modified by extreme weather conditions? and (3) Can 
differences in fire severity across ownership types be explained 
by the forest structures generated by private industrial versus 
public management?

2   |   Materials and Methods

2.1   |   Data and Study Design

2.1.1   |   Study Area

To answer these questions, we analyzed patterns of burn sever-
ity in five wildfires that burned a collective 459,554 ha within 
the footprint of the Plumas National Forest, northern California, 
USA: the Dixie, North Complex, Sugar, Sheep, and Walker Fires 
(Figure  1; Table  S1). Though these fires also burned an addi-
tional 100,000+ hectares in neighboring areas, the study region 
was restricted to the Plumas National Forest and adjacent pri-
vate land due to the availability of LiDAR data. All fires began 
on public land. Three of the fires were the result of lightning, 
while the Dixie Fire was started by a damaged electrical distri-
bution line, and the source of the Walker Fire is unknown.

Forests in this region are primarily comprised of yellow pine 
and mixed-conifer forest types, dominated by ponderosa pine 
(Pinus ponderosa), sugar pine (Pinus lambertiana), Douglas-
fir (Pseudotsuga menziesii), incense-cedar (Calocedrus decur-
rens), white fir (Abies concolor), black oak (Quercus kellogii) 
and Jeffrey pine (Pinus jeffreyi), with smaller portions of red fir 
(Abies magnifica), quaking aspen (Populus tremuloides), and 
lodgepole pine (Pinus contorta var. murrayana). Most of these 
species are adapted to frequent, low-severity fire regimes, with a 
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historical average fire return interval in this region of 6–20 years 
(Coppoletta et al. 2024; Moody et al. 2006). The study area spans 
both the east and west slopes of the Sierra Nevada, including 
elevations ranging from 254 m in the western foothills to 2540 m 
at the Sierra Nevada crest.

A large majority of the study area (81.6%; after removing non-
forested pixels) was managed by public land agencies, primarily 
the United States Forest Service, whereas 11.7% was owned by 
private industrial timber companies, and the remaining 6.6% by 
non-industrial private entities (we refer to this third category as 
“other” throughout the manuscript; Figure  1B). Land owner-
ship was determined using the Fire and Resource Assessment 
Program's (FRAP) ownership database (https://​frap.​fire.​ca.​gov/​

mappi​ng/​gis-​data) and a map of industrially managed timber-
land in California assembled using property records (T Moody 
personal communication; Figure 1B). Finally, we restricted our 
analysis to include only those 30 × 30 m pixels with > 10% cover 
of trees over 4 m tall. We did this to avoid analyzing non-forested 
pixels. The final dataset contained 3,315,523 pixels, or just under 
300,000 ha.

2.1.2   |   Estimating Fire Severity

Fire severity was quantified using the bias-corrected compos-
ite burn index (CBI) at a 30 m resolution, which we estimated 
using a random forest model developed by Parks et al. (2019). 

FIGURE 1    |    Study overview. (A) shows fire severity in the five study fires as quantified by the composite burn index (CBI). Areas in gray indicate 
regions which were within a fire perimeter, but which were excluded from the study because they fell outside the extent of our LiDAR dataset [col-
lection perimeter]. The inset map in the upper-right corner of (A) shows the location of these five fires within the US state of California. (B) shows 
a map of individual trees within a small patch of the area displayed in Panel A, illustrating the forest structure data derived from the aerial LiDAR 
data. Colors in Panel C correspond to the height of individual trees. Black lines indicate property ownership boundaries between private industry 
(left) and the United States Forest Service (right). The difference in forest structure between land owned by private industry and the public is evident. 
Particularly, the private industrial land contains several homogeneous patches of trees of similar height, characteristic of plantation management, 
whereas the right side exhibits high heterogeneity in both tree height and the spatial distribution of stems and forest gaps. (C) demonstrates how the 
individual tree data was processed into forest structure metrics, where each 30 × 30 m pixel shows the average tree height in a larger 90 m by 90 m 
window centered on that pixel. (D) displays land ownership patterns over the full study area. (E) shows the estimated progression of each fire in the 
study area. Fire progressions were estimated using visible infrared imaging radiometer suite (VIIRS) data from NASA, and were integral for quan-
tifying weather at a high spatial and temporal resolution. In the plot, progressions are normalized by the total length of the fire, such that the color 
corresponds to the percent of the total fire length at which a pixel burned. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries.
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Specifically, this model uses Landsat imagery taken immedi-
ately before and 1 year after each fire, as well as information 
on local geography and climate, to quantify CBI based on es-
tablished empirical relationships. To clarify that CBI is esti-
mated from remote sensing data rather than on-the-ground 
measurements, we refer to it as “satellite-estimated CBI” 
throughout. After estimating CBI, we categorized each pixel 
as burning at “high severity” or “low-moderate severity” using 
an empirically derived CBI threshold (CBI > 2.25; Miller and 
Thode 2007).

Though satellite-estimated CBI is not a direct measure of fire 
severity, which requires field measurements of tree mortal-
ity, studies have demonstrated reliable correlations between 
satellite-estimated CBI and overstory mortality (Lydersen 
et al. 2016). This is particularly true for the distinction between 
“low-moderate severity” and “high severity,” which regularly 
corresponds to over 95% live basal area mortality in empirical 
studies (Lydersen et  al.  2016; Miller and Thode  2007; Parks 
et al. 2019). We chose to quantify severity as a binary outcome 
because of the distinct ecological and economic consequences of 
high-severity fire, which can spur conversion to non-forest eco-
system types (Coop et al. 2020; Davis et al. 2019).

2.1.3   |   Quantifying Forest Structure

We used datasets derived from two airborne LiDAR acquisitions 
that covered the entirety of our study area and were collected by the 
USGS and NASA in the summer and fall of 2018–2019. The Forest 
Service Mapping and Remote Sensing Team used these LiDAR 
data to identify the approximate locations and tree crown area of 
individual trees > 4-m in height. Individual trees were delineated 
using the TreeSeg tool in the FUSION software package version 
4.20 (McGaughey 2007). TreeSeg applies a watershed transforma-
tion algorithm to a high-resolution canopy height model (CHM) 
to identify the highest point of each vegetation feature. These 
high points are then interpreted as approximate locations of indi-
vidual trees, frequently referred to as “tree approximate objects” 
(Jeronimo et al. 2018). For simplicity, we refer to these objects as 
“trees” or “stems” throughout this article. Individual tree crowns 
were estimated using an algorithm in TreeSeg that starts at the 
high point and identifies the edge (i.e., where canopy height drops 
below a threshold height or starts to increase) in 18 evenly spaced 
radial profiles (McGaughey 2007). CHMs were created using 
a 0.75-m cell size that was smoothed with a 3 × 3 lowpass filter. 
FUSION-generated estimates of first return density ranged from 
13.2 to 15.9 returns/m2 across the project area.

Using the data processed with TreeSeg, we further derived five 
forest structure metrics: mean stem density per hectare (trees 
> 4 m tall), mean stem height, mean gap area, spatial homogene-
ity, and a “ladder fuels index.” These metrics were chosen because 
(1) they are thought to play a key role in determining fire behavior 
and (2) they correspond to perceived differences between public 
and private industrial management. Each of these metrics, except 
for the ladder fuels index, was quantified at two spatial scales: a 
90 m by 90 m box and a 390 m by 390 m box, both centered on each 
30 m by 30 m pixel. The 90 m by 90 m (~1 ha) scale was intended 
to capture the effects of the immediate neighborhood of a pixel 
on fire behavior, whereas the 390 m by 390 m (~15 ha) scale was 

intended to capture dynamics at the stand scale (15 ha is slightly 
larger than the maximum allowed clear-cut in California).

To calculate mean stem density, we simply summed the total 
number of individual tree stems within each bounding box (90 m 
by 90 m or 390 m by 390 m) and divided by the area. LiDAR often 
fails to identify small trees, especially under dense canopy lay-
ers, meaning stem density is likely underestimated in this study. 
Mean tree height was calculated as the average of all individual 
tree stems within the bounding box. To determine average gap 
area, we used tree canopy polygons to first delineate all gaps 
within a bounding box (both neighborhood and stand scale)—a 
gap being defined as any contiguous area of forest not occupied 
by a tree's canopy. Gaps were only quantified within a given 
bounding box, meaning if a gap extended past the boundary of 
the 90 m by 90 m or 390 m by 390 m area, the portions falling 
outside the box were excluded. Finally, we calculated the size of 
each gap within the box and took the average.

The spatial homogeneity metric is intended to describe the degree 
of clustering versus regularity in the location of individual tree 
stems. To place pixels along this continuum, we divided the aver-
age nearest neighbor distance of trees within a bounding box by 
the expected nearest neighbor distance had each tree been placed 
at random according to a Poisson point process. The result is the 
following equation, adapted from (Clark and Evans 1954):

where N is the number of stems in the bounding box, ui,j is the 
distance in meters between stem i and stem j, and A is the area 
of the bounding box in square meters.

Ladder fuels allow fire to spread from the forest floor into the 
canopy and are thus critical drivers of fire severity. These can be 
small trees, low tree branches, shrubs, and/or downed wood that 
generate a continuous vertical fuel profile between the forest floor 
and canopy. To characterize the relative amount of ladder fuels, 
we developed a metric that captures both the vertical continuity 
and total amount of vegetation in a pixel. To derive this metric, 
we used data on vegetation cover in four height bands: 2–8, 8–16, 
16–32, and 32 m+, which have historically been used to charac-
terize similar forest types in analyses of ladder fuels, fire impacts, 
and critical habitat delineation (Kane et  al.  2014, 2019; Kramer 
et  al.  2016; North et  al.  2017). These cover data were processed 
from the raw point cloud data by the Forest Service Mapping and 
Remote Sensing Team using the “Cover” function in the FUSION 
software package. Then, the continuity in cover across these four 
height bands was quantified by adapting Simpson's evenness index 
(Morris et al. 2014), which is equal to one when all four bands have 
the same cover, and less than one when there is heterogeneity in 
cover across bands. Multiplying this evenness index by the average 
cover across all four bands gives the ladder fuels index:
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where �c is the mean cover across the bands, q is the tallest band 
with cover greater than zero, and cj is the canopy cover of band 
j. This metric is similar to several prior approaches developed 
to quantify ladder fuels from LiDAR imagery (Hakkenberg 
et al. 2024; Kramer et al. 2016). However, whereas past efforts 
focus primarily on the total cover in low canopy strata, we inte-
grate both total cover and vertical continuity.

Unlike the other forest structure metrics in our analysis, we cal-
culated the ladder fuels index only at the pixel scale (30 m by 
30 m). There were two reasons for this. First, the ladder fuels 
index is highly collinear with stem density and average gap area, 
meaning it would be difficult to separate its effect on severity 
from the effects of these metrics if measured on the same spatial 
scale. Second, ladder fuels most strongly affect the mortality of 
trees immediately above them. While there are certainly sec-
ondary effects at larger scales, these are both less pronounced 
and likely captured by the other metrics in our analysis.

2.1.4   |   Weather, Climate, and Topographic Indices

To characterize the weather experienced by each 30 m by 30 m 
pixel at the time it burned, we used the average of nearby remote 
automated weather stations (RAWS), weighted by distance and 
elevation difference (Figure S1). We used two weather indices 
known to strongly influence fire behavior: the hot-dry-windy 
index and fuel moisture. The hot-dry-windy index is a composite 
metric calculated by multiplying wind speed and vapor pressure 
deficit (a function of temperature and relative humidity; Srock 
et al. 2018). Fuel moisture is simply the percent moisture content 
of 10-h woody fuels, measured using an instrument designed to 
emulate medium-sized twigs on the forest floor.

A key step in quantifying these metrics was to determine the 
window in which each pixel burned. Typically, the low tempo-
ral and spatial fidelity of weather data hinders analyses of its 
relationship to fire effects (e.g., Levine et al. 2022). To overcome 
this limitation, we took advantage of visible infrared imaging 
radiometer suite (VIIRS) data from NASA. VIIRS measures 
heat incidence on the ground at regular intervals and can there-
fore be used to delineate wildfire activity at a 375-m resolu-
tion (Briones-Herrera et  al.  2020; Stephens et  al.  2022). Using 
this data, we developed an algorithm (modified from Briones-
Herrera et al. 2020) to estimate the 8-h time window in which 
each pixel in the study area burned. See Appendix 1 for a com-
plete description of the algorithm. Weather indices were then 
averaged across each time window.

We also took advantage of these temporal data to quantify 
average fire severity in the period before each pixel burned 
(henceforth “incoming severity”). Estimating the incoming se-
verity for each pixel allowed us to control for the fire's effects 
as it approached a given area. Specifically, for each pixel in the 
study region, we took a spatially weighted average of severity 
(satellite-estimated CBI) for a random sample of 1000 pixels that 
burned in the previous 8-h window.

All topographic indices (slope, topographic position index, 
and heat load) were calculated from the US National Elevation 
Dataset 30 m digital elevation model (Gesch et al. 2002). Slope 

was calculated using the “terra” package version 1.6-47 (Hijmans 
et al. 2022) in R version 4.2.2 (R Core Team 2013). Topographic 
position index (TPI), which characterizes a pixel's elevation rel-
ative to nearby topography (i.e., top of a ridge versus bottom of a 
canyon) was calculated as the difference between a pixel's eleva-
tion and the average elevation of all pixels within a 300 m radius. 
We chose a 300 m annuli because previous studies have demon-
strated a clear association between TPI and fire severity at that 
scale (Levine et al. 2022; Zald and Dunn 2018). Heat load, which 
describes incident radiation, was calculated from slope, aspect, 
and latitude following the methods of McCune and Keon (2002). 
To account for bioclimatic differences across the study area, we 
also analyzed data on climatic water deficit from the California 
Basin Characterization Model (Flint et al. 2013).

2.2   |   Statistical Analyses

2.2.1   |   Assessing the Impact of Ownership on 
Fire Severity

To determine whether the incidence of high-severity effects in 
our five study fires was greater on private industrial or public 
land, we fit a binomial generalized linear model to estimate the 
probability of a 30 m by 30 m pixel burning at high severity as 
a function of ownership category (private industrial, public, or 
other). Because these ownerships exhibit substantial differences 
in both their biophysical characteristics and the weather condi-
tions experienced during the fire, we also controlled for two key 
weather metrics (hot-dry-windy index and fuel moisture), three 
topographic indices (slope, topographic position index, and heat 
load), climatic water deficit, incoming severity, and a unique 
identifier for each fire (“Fire ID”), which was designed to cap-
ture unmeasured variation in suppression activity. All continu-
ous predictors were centered and transformed to standard units 
to aid model fitting and facilitate comparison of effect sizes. 
Models were fit using the “speedglm” package (version 0.3-5; 
Enea et al. 2015) in R.

Wildfire is a contagious spatial process—the likelihood of a 
pixel burning at high severity is strongly influenced by fire be-
havior in adjacent pixels. Therefore, fire severity data are often 
spatially autocorrelated, which artificially deflates standard 
error estimates. To account for this, we used spatial block boot-
strapping to quantify parameter uncertainty (Lahiri  2018; see 
Appendix 3). Due to the computational intensity of this method, 
we took a 25% subsample of the data to speed model fitting. 
While block bootstrapping accounts for artificially small stan-
dard errors introduced by spatial autocorrelation, we recognize 
that including incoming severity as a covariate may introduce 
additional spatial information, potentially influencing estimates 
of other spatially structured predictors such as weather and for-
est structure.

2.2.2   |   Machine Learning Methods to 
Understand the Importance of Forest Structure, 
Weather, Climate, and Topography

To compare the relative importance of forest structure, 
weather, climate, and topography for predicting fire severity, 
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we trained two random forest classification models: one for 
forest structure quantified at the 90 m by 90 m (neighborhood) 
scale, and one for the larger 390 m by 390 m (stand) scale. 
Unlike regressions, random forest models do not presume an 
interaction structure or functional form for the relationships 
between predictors and outcomes (Breiman 2001). This makes 
them an ideal tool with which to examine the relative impor-
tance of various predictors.

To fit these models, we first centered all continuous predictors 
and scaled them to standard units (see Figure 3 for a complete 
list of predictors). The dataset was divided into a training dataset 
(80%) and a testing dataset (20%); but unlike the analysis of own-
ership described above, we did not further subsample the data. 
We used spatially blocked k-fold cross validation on the train-
ing dataset to tune two key hyperparameters (maximum tree 
depth and number of subfeatures) while avoiding potential bias 
from spatial autocorrelation. We selected the best-fitting model 
based on log-loss, a measure of predictive accuracy. Finally, we 
used the testing dataset to evaluate the out-of-sample predic-
tive ability of the best-fitting model (Tables S3 and S4). Models 
were fit using the “MLJ” package (Blaom et  al.  2020) in julia 
version 1.10.1 (Appendix 2; Bezanson et al. 2017). To compare 
the importance of each predictor, we quantified their Shapley 
importance values for a subset of 10,000 pixels (Sundararajan 
and Najmi 2020).

2.2.3   |   Quantifying the Relationship Between Fire 
Severity and Its Drivers

The same flexibility that makes random forest models well-
suited for ranking the importance of predictors makes them 
poorly suited for understanding the functional relationships 
between predictors and outcomes. Therefore, to investigate the 
relationships between forest structure, weather, topography, 
and fire severity, we fit two binomial generalized linear models 
(GLMs), one for each spatial scale. These models include all the 
same variables as the random forest models, except that we now 
assume a linear relationship between these variables and the 
log-odds of a pixel burning at high severity. To test the validity 
of this assumption, we compared the ranking of variables from 
the random forest models to the ranking of effect sizes in the 
GLMs. Similar rankings would suggest that the GLMs do not 
exclude key nonlinear relationships.

To investigate how the effects of forest management are mod-
ified under extreme weather conditions, we also included 
interactions between four of the five forest structure metrics 
and the hot-dry-windy index. We did not consider interactions 
between spatial homogeneity and the hot-dry-windy index 
due to high collinearity with stem density (Figures  S11 and 
S12), which would complicate the interpretation of the inter-
action effect. As with the models fit to characterize the effect 
of ownership on the probability of high-severity fire, we cen-
tered and standardized all continuous variables and estimated 
parameter uncertainty using spatial block bootstrapping. The 
data was again subsampled to 25% of its original size to reduce 
computation time.

2.2.4   |   Comparing the Forest Structure of Private 
Industrial and Public Lands

Finally, we quantified the differences in forest structure 
found on private industrial versus public forestlands to deter-
mine whether they could explain disparities in high-severity 
fire occurrence between these ownership types. To do so, we 
calculated the relative frequency of the values of each forest 
structure metric on the two ownership types using differ-
enced density plots, which, though descriptive rather than an-
alytical, allowed us to capture the complex differences across 
private industrial and public lands. We also generated similar 
plots for the non-structural attributes discussed in this paper: 
weather, climate, and topography. All data and code used 
to conduct the analyses in this paper are publicly available 
(Levine et al. 2025a, 2025b).

2.2.5   |   Sensitivity Analyses

We conducted five additional sensitivity analyses to assess 
whether our results were robust to key assumptions and mod-
eling choices. (1), we tested whether our findings depended on 
the choice of severity metric by repeating the analyses using 
a binary metric derived from the delta normalized burn ratio 
(dNBR), rather than satellite-estimated CBI. This analysis was 
motivated by two concerns: (i) satellite-estimated CBI is not a 
direct field measurement but is inferred from satellite imagery 
using a machine learning model and (ii) that model includes 
climatic water deficit as a predictor, potentially introducing 
circularity in our analyses, which also include climatic water 
deficit as a covariate. (2), as a further test of circularity, we 
also refit each model after removing climatic water deficit 
as a predictor. We also tested the sensitivity of our findings 
to: (3) the level of subsampling, (4) the threshold CBI value 
for classifying fire severity, and (5) multicollinearity among 
forest structure metrics. While these analyses are too exten-
sive to present fully in the main text, details are provided in 
Appendix S4.

3   |   Results

3.1   |   High-Severity Fire Incidence Is Higher on 
Private Industrial Land

Private industrial ownership was associated with a 1.45 times 
increase in the odds of high-severity fire compared to pub-
licly owned land in the study area, and a 2.1 times increase 
compared to land owned by neither private industry nor 
public agencies (“other” land), even after controlling for the 
effects of both weather and biophysical characteristics like 
climatic water deficit, topographic position index, and slope 
(Figure 2). This corresponds to an increase in the probability 
of high-severity fire occurrence of 9% over public land (65.7% 
[62.7%, 67.7%] vs. 56.5% [55.0%, 57.7%], brackets indicate boot-
strapped 95% confidence intervals; see Materials and Methods 
and Table  S2), and 19% over “other” land (46.5% [43.7%, 
49.4%]), corroborating the results of previous analyses (Levine 
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et al. 2022; Zald and Dunn 2018). The estimated effect of pri-
vate industrial versus public land ownership was equivalent to 
a one standard deviation increase in the hot-dry-windy index, 
a three standard deviation decrease in fuel moisture, or a 10 
standard deviation increase in heat load.

3.2   |   Both Forest Structure and Extreme Weather  
Are Important Predictors of High-Severity Fire 
Occurrence

Both the neighborhood- and stand-scale random forest models 
accurately predicted severity out of sample, with the stand-
scale model outperforming the neighborhood-scale model by 
a small margin (AUC = 0.86 vs. 0.85; Tables S3 and S4). The 
models suggest that incoming severity, fire weather, and for-
est structure are each critical predictors of high-severity fire 
occurrence.

Incoming severity, a measure of a fire's effects as it approaches 
a given pixel, was the most important predictor in both models 
by a significant margin (Figure 3). This indicates that the conta-
gious nature of fire—the propensity for high-severity fire to drive 
further high-severity effects—is the most important factor in 
predicting severity. For the neighborhood-scale model, the sec-
ond most important predictor was mean stem density, followed 
closely by the hot-dry-windy index. For the stand-scale model, 
the hot-dry-windy index was the second most important predic-
tor, followed by stem density, fuel moisture, and the ladder fuels 
index (Materials and Methods; Figure 3). Mean gap area, stem 
height, and topographic position index (TPI) were also import-
ant predictors of fire severity in both models (Figure 3). Overall, 
this analysis suggests that both weather and forest structure are 
key predictors of high-severity fire occurrence.

FIGURE 2    |    Fire severity by forest ownership. Estimated difference 
in the probability of a 30 × 30 m pixel burning at high severity after con-
trolling for systematic differences in weather, climate, and topography 
across these ownership types. Points indicate the mean predictions of a 
binomial generalized linear model (Materials and Methods). Error bars 
indicate the upper and lower 95% confidence interval bounds, which 
were determined using spatial block bootstrapping to account for spa-
tial autocorrelation in the underlying data. The “other” land ownership 
category corresponds to all pixels in the study area that were not owned 
by either private industry or public agencies (primarily small private 
landowners and non-profit conservation organizations).

FIGURE 3    |    Variable importance in predictive models. Predictive variables in the random forest classification models ranked by Shapley feature 
importance. The left panel displays results for the neighborhood-scale model, in which all forest structure metrics other than the ladder fuels index 
were calculated in a 90 m by 90 m box (~1 ha) centered on the focal pixel. The right panel displays results for the stand-scale model, where structure 
metrics were calculated within a 390 m by 390 m box (~15 ha). To avoid potential bias, the pixels used to calculate feature importance were sampled 
evenly from private industrial and public land within the study area.
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3.3   |   Interactions Between Forest Structure 
and Weather Drive High Severity Fire Occurrence

Because the neighborhood- and stand-scale models produced 
similar results, we focus on the stand-scale model here, which 
had a lower AIC score (see Tables S5, S6 and Figure S6 for full 
results). Overall, the ranking of effect sizes in this model was 
very similar to the ranking of predictive importance from the 
random forest classifier, with only one difference among the 
seven most important variables (Figure 3; Table S5).

We identified clear, positive effects of stem density (0.32 [0.25, 
0.40]), ladder fuels index (0.21 [0.17, 0.24]), and spatial homo-
geneity (0.13 [0.06, 0.20]), and a clear, negative effect of mean 
stem height (−0.10 [−0.16, −0.04]) on the conditional proba-
bility of high-severity fire (Figure 4; Table S6). The magnitude 
of these effects was large. A one standard deviation increase 
in stem density corresponded to a 1.4 times increase in the 
odds of high-severity fire occurrence, equivalent to the effect 
of a 1.5 standard deviation increase in topographic position 
index, a 2.5 standard deviation decrease in fuel moisture, or 
a 6.4 standard deviation increase in heat load. The effects of 
ladder fuels, homogeneity, and stem height were smaller, but 
still substantial relative to the effects of topographic variables 
known to influence fire severity (Figure  4). Together, these 
results suggest that dense, homogeneous stands with high 
ladder fuels and small trees were more susceptible to high-
severity fire.

Both weather metrics had clear effects on high-severity fire 
occurrence (Figure  4). The probability of high-severity fire 
increased with the hot-dry-windy index (0.41 [0.35, 0.46]) 
and decreased with fuel moisture (−0.13 [−0.17, −0.09]) 
(Figure 4). A one standard deviation increase in the hot-dry-
windy index corresponded to a 1.5 times increase in the odds 
of high-severity fire, similar to the effect of stem density. 
The effect of fuel moisture was smaller, but similar in mag-
nitude to the effects of spatial homogeneity and stem height 
(Figure 4; Table S6). Incoming severity, topographic position 
index, heat load, and climatic water deficit also exhibited clear 
relationships with severity.

Weather modified the effects of several forest structure met-
rics on severity, as evidenced by significant interactions be-
tween hot-dry-windy index and stem density, average stem 
height, and ladder fuels index (Figure  4). The interaction 
between hot-dry-windy index and stem density was positive 
(0.15, [0.098, 0.20]), meaning density-driven increases in the 
probability of high severity fire were magnified in extreme 
weather conditions (Figure 4). The clear, positive interaction 
between hot-dry-windy index and stem height (0.15 [0.11, 
0.20]) suggests that extreme weather could reverse the mod-
erating effect of tree size on fire severity. In milder weather 
conditions, larger trees were associated with reduced proba-
bility of high-severity fire occurrence. But in extreme condi-
tions, the presence of large trees increased the probability of 
high-severity fire (Figure 4). Finally, there was a negative in-
teraction between hot-dry-windy index and ladder fuels index 
(−0.063 [−0.10, −0.021]), meaning the effect of ladder fuels on 
fire severity was weaker in extreme conditions.

3.4   |   Forest Structures Found on Private Industrial 
Land Are Correlated With High-Severity Fire

In general, private industrial land in the study area was 
characterized by forest structures associated with increased 
high-severity fire risk (Figure  5). Compared to public lands 
in the study area, a larger proportion of private industrial 
lands had high stem density, homogeneous tree spacing, and 
more ladder fuels at both the neighborhood and stand scales 
(Figure 5). These three metrics have the largest estimated ef-
fect on high-severity fire probability out of all forest structure 
variables (Figure  4), meaning discrepancies between public 
and private industrial forestland in these metrics could help 
explain the increased severity observed in industrial forests. 
Private industrial forests also experienced more extreme fire 
weather, both in terms of fuel moisture and hot-dry-windy 
index (Figure 5). Likely this is because private industrial for-
ests are typically found on low–mid elevation sites (Figure 5). 
While the prevalence of extreme weather conditions certainly 
contributes to elevated fire severity in industrially managed 
forests, models which account for these differences still esti-
mate that the probability of high-severity fire is elevated on 
industrial forestland (Figure 2).

3.5   |   Sensitivity Analyses

The results of our study were robust to the choice of sever-
ity metric, and showed no evidence for circularity introduced 
by the inclusion of climatic water deficit as a model covariate 
(Appendix 4, Tables S8–S13). Replacing satellite-estimated CBI 
with dNBR did not cause the estimated effects of ownership, 
weather, or forest structure to change sign or for their 95% confi-
dence intervals to overlap zero (Tables S8–S10). The results were 
similarly unaffected by removing climatic water deficit as a co-
variate (Tables S11–S13). Additionally, the qualitative results of 
our study were insensitive to variation in the level of subsam-
pling (Figures S7 and S9), the choice of CBI threshold for delin-
eating fire severity (Figures S8 and S10), and multicollinearity 
among forest structure metrics (Figure S13). See Appendix 4 for 
more details on these analyses.

4   |   Discussion

In this study we established the clear importance of forest 
structure in driving wildfire severity—even under the ex-
treme burning conditions associated with very large wild-
fires (> 100,000 ha)—and leveraged this finding to explain 
observed increases in severity in industrial forests. Metrics 
describing forest structure, in particular stem density and 
spatial homogeneity, were consistently ranked among the 
most important predictors of high-severity fire (Figure  3). 
The predictive importance of stem density was comparable to 
that of the hot-dry-windy index, and consistently higher than 
fuel moisture, two weather metrics known to drive extreme 
fire behavior (Figure 3). On both public and privately owned 
lands, stands characterized by high tree densities, homoge-
neous spatial structure, and more continuous ladder fuels 
were more likely to burn at high severity. Moreover, extreme 
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9 of 16

FIGURE 4    |    Effects of forest structure and weather on fire severity. Estimated effects of forest structure, weather, and topography on the probabil-
ity of a 30 m by 30 m pixel burning at high-severity. Shaded regions represent 95% confidence intervals, estimated using spatial block bootstrapping 
(Materials and Methods). Solid lines indicate a statistically clear relationship (95% CI does not contain 0), whereas dotted lines indicate the lack of a 
clear relationship. Darker blue colors illustrate the relationship under more extreme weather conditions (higher hot-dry-windy index). All relation-
ships are shown for the stand scale (390 m by 390 m) model. Equivalent plots for the neighborhood scale model can be found in Figure S2.
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10 of 16 Global Change Biology, 2025

FIGURE 5    |    Effects of forest structure and weather on fire severity. Density difference plots characterizing the distribution of key forest struc-
ture, weather, and topographic variables on public versus private industrial forestland. Plots were generated by first subsampling the data such that 
there was an equal number of datapoints from each ownership class. Then, the density of each variable was calculated for each ownership class and 
then differenced to generate the panels shown in the figure. When the density difference is below the dotted line (< 0), it indicates that a value is 
overrepresented on public land (green lines). When the density difference is above the dotted line, it indicates that a value more prevalent on private 
industrial land (blue lines).
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weather magnified the effect of stem density on fire severity, 
suggesting that interventions which remove live trees are crit-
ical for moderating severity under climate change.

4.1   |   Patterns in Fire Severity Across Ownerships

We observed a clear increase in the probability of high-severity 
fire occurrence on private industrial land relative to land 
managed by public agencies (Figure 2), echoing the findings 
of prior studies (Bousfield et al. 2025; Levine et al. 2022; Zald 
and Dunn  2018). This is true even after controlling for dif-
ferences in topography, climate, and weather between these 
ownership types, suggesting that the management practices of 
private industrial timber companies contribute to the greater 
frequency of high-severity fire on these lands. The probability 
of high-severity fire was lowest on land owned by neither pri-
vate industry nor the public, that is, “other” land (Figure 2). 
However, this third category was significantly smaller than 
the other two and contains a large diversity of landowners, 
including single-family homes, small private landowners, 
ranches, and private conservation lands. Additionally, these 
properties tend to be closer to roads and population centers, 
meaning they have increased access to suppression resources 
which could partially explain their relatively low severity 
(Figure 1; Levine et al. 2022).

Our analysis provides a data-driven explanation for observed 
increases in the probability of high-severity fire on private in-
dustrial timberland relative to publicly managed forests. A 
higher proportion of private industrial forestlands in our study 
area were characterized by dense, spatially homogeneous stands 
with high amounts of ladder fuels. It is possible, if not likely, 
that these dense, homogeneous forest conditions are a product 
of conventional forest management practices tied to timber ob-
jectives. These practices include even-aged silviculture with 
60–80-year rotations, maximizing growing space occupancy 
for “crop” trees, and minimal non-commercial intermediate 
stand treatments (i.e., pre-commercial or fuels reduction thin-
ning, mastication, or prescribed fire). The forest structural at-
tributes associated with these practices (also see Stephens and 
Moghaddas  2005), in combination with severe fire weather, 
were strongly associated with increased probability of high-
severity fire (Figures  4 and 5). Together, these results suggest 
conventional forest management practices that are often char-
acteristic of industrial forests could be modified to reduce the 
likelihood of high-severity fire effects.

The proportion of high-severity fire effects, on both public and 
private industrial forest land in our study area, was considerably 
higher than historical estimates for these forest types (Safford 
and Stevens 2017) and continues to increase despite ownership 
(Miller et al. 2012; Parks et al. 2016; Steel et al. 2018; Stevens 
et al. 2017). Within our study area, the probability of burning at 
high severity was high on both public and private lands, ranging 
from a mean of 56.5% on public land to 65.7% in private indus-
trial forests. Thus, the results of this study should not be taken as 
evidence that forest management practices conducted on public 
lands are effective at reducing fire severity. Extensive forest res-
toration and fuel reduction treatments are necessary to mitigate 
fire severity across a majority of California's frequent-fire adapted 

forests (Stephens et al. 2024), especially given forecast increases 
in extreme fire weather under climate change (Abatzoglou and 
Williams  2016; Little Hoover Commission  2018). This study 
provides key information about specific forest structure metrics 
that should be targeted for doing so.

4.2   |   The Interactive Effects of Forest Structure 
and Extreme Weather on Fire Severity

Metrics describing forest structure (stem density, spatial homo-
geneity, and ladder fuels index), weather (hot-dry-windy index 
and fuel moisture), and incoming severity were consistently 
ranked as the most important predictors of high-severity fire in 
random forest models at both spatial scales examined and across 
ownerships (Figure  3). On all ownership types, dense, homo-
geneous forest stands with high ladder fuels were more likely 
to burn at high severity, mirroring findings from prior studies 
that indicate an important role of both heterogeneity and total 
fuel loads in driving extreme fire effects (Forbes et  al.  2022; 
Hakkenberg et  al.  2024; Kane et  al.  2015; Koontz et  al.  2020; 
Steel et al.  2021). The probability of high-severity fire also in-
creased with more severe weather conditions (i.e., increasing 
hot-dry-windy index and lower fuel moistures).

The consistent ranking of both weather and structural met-
rics as key predictors of fire severity is an important revelation 
in light of concerns that extreme weather might overwhelm 
efforts to mitigate fire severity through appropriate forest 
management (Bradstock et al. 2010; Cary et al. 2009; Penman 
et al. 2013). To the contrary, this study suggests that manage-
ment interventions which alter forest structure, particularly 
by reducing tree density and spatial homogeneity, may be 
highly effective tools of severity mitigation even in extreme 
weather conditions (Figure  4). This corroborates prior stud-
ies of fuel treatment efficacy in single fire events and recent 
meta-analyses which have found a clear, mitigating effect of 
thinning and other fuel reduction practices on fire severity 
(Davis et  al.  2024; Lydersen et  al.  2017; Lyons-Tinsley and 
Peterson 2012; Prichard et al. 2020).

Weather was found to modify the effects of several key forest 
structure attributes on high-severity fire occurrence, providing 
important insight into which management interventions may be 
most effective in a warmer future. For high values of the hot-
dry-windy index, the effect of stem density on the probability 
of high-severity fire was magnified. This indicates that man-
agement interventions that reduce tree density are even more 
critical under extreme weather conditions (Figure 4). Similarly, 
extreme weather appeared to reverse the moderating effect of 
stem height on the probability of high-severity fire occurrence at 
both spatial scales (Figures 4 and S6). Possibly, extreme fire be-
havior driven by high winds and hot temperatures overwhelms 
the greater fire resilience of large trees, instead turning them 
into a fuel source which further exacerbates these extreme dy-
namics. Finally, the correlation between high ladder fuels index 
and high-severity fire incidence was weaker under extreme 
weather conditions. In hot, windy, and dry conditions vertical 
fuel connectivity, which can vector fire into the canopy, may 
be less important due to the increasing likelihood of existing 
crown-to-crown fire transmission.
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4.3   |   Management Implications

The clear interaction between tree density and the hot-dry-
windy index underscores the importance of effective fuel and 
forest management, especially in a warmer climate. For a hot-
dry-windy index of 150, our model predicts that a decrease in 
LiDAR-estimated stem density from 200 to 100 trees per hectare 
results in a 28% decline in the probability of high-severity fire 
(85% [82%, 89%] vs. 57% [53%, 61%]). Even in mild weather condi-
tions, stem density has a large estimated effect on the probability 
of high-severity fire. For a hot-dry-windy index of 50, a decline 
from 200 to 100 trees per hectare was associated with an 18% 
decline in the probability of high-severity fire (66% [64%, 70%] 
vs. 47% [45%, 49%]).

This finding—that the effect of density is magnified under se-
vere weather—is critical and suggests that to moderate extreme 
fire effects, managers should focus on reducing tree density 
(Schwilk et al. 2009). Prescribed fire, which is often preferred 
over mechanical thinning by environmental groups due to its 
reduced impact, does not typically reduce the density of me-
dium and large trees (Knapp et al. 2017; Schwilk et al. 2009). 
Instead, the goal of prescribed fire is to reduce surface fuels and 
the density of small trees (ladder fuels) (Ryan et al. 2013). We 
did not quantify surface fuels in our analysis because of LiDAR 
data limitations and are thus unable to provide information 
about the full efficacy of treatments, like prescribed fire, that 
focus on reducing these fuels. However, previous studies have 
demonstrated that reducing surface fuels is key to reducing 
wildfire intensity and tree mortality in western United States 
frequent-fire adapted forests (Davis et al. 2024; Shive et al. 2024; 
Stephens et al. 2009). Indeed, there is increasing evidence that 
combined thinning and prescribed fire treatments are most ef-
fective at mitigating fire severity (Bernal et al. 2025). A recent 
paper from the southern Cascade Mountains (just north of our 
study area) found that mechanical thinning treatments that 
reduced overstory tree density in conjunction with prescribed 
burns were most effective at limiting crown fire behavior in a 
severe wildfire (Brodie et al. 2024). Similarly, a meta-analysis of 
fuel treatment effects on subsequent fire severity found that the 
most effective strategy was combined overstory thinning and 
prescribed fire (Davis et al. 2024). These findings, in combina-
tion with the results of our study, suggest that effective severity 
mitigation strategies should involve treatments that reduce both 
overall tree density and surface fuels.

The most important driver of high-severity fire occurrence 
in each analysis was incoming severity, the average satellite-
estimated CBI of pixels which burned in the preceding 8-h in-
terval (Figures 3 and 4). This result emphasizes the contagious 
nature of wildfire: a fire burning at high severity tends to con-
tinue burning at high severity. Likewise, activities which re-
duce fire severity in one location are likely to have important 
downstream effects, reducing fire severity in areas that burn 
immediately after. An important implication of this finding is 
that forest structure is not only important at the neighborhood 
or stand scales quantified in this study, but also at the landscape 
scale, indicating that cross-ownership partnerships and regional 
planning are necessary to effectively reduce fire severity (Little 
Hoover Commission  2018). Indeed, prior studies have found 
similar landscape-scale effects of fuel reduction treatments, 

forest structure, and past fire behavior (Chamberlain et al. 2024; 
Lydersen et al. 2017; Povak et al. 2020; Urza et al. 2023).

5   |   Limitations

This study is unique in the availability of extensive, high-
resolution spatial data that provided a snapshot of vegetation 
structure prior to the arrival of several large wildfires, allowing 
us to examine the mechanisms underlying increases in fire se-
verity. However, there are several limitations with this analy-
sis. First, while substantial efforts were made to quantify fire 
weather at a similar resolution and scale to the LiDAR-derived 
forest structure data, weather data is inherently less precise. 
We employed a sophisticated interpolation of weather from nu-
merous remote weather stations (RAWS; Figure S1), applying a 
novel algorithm to delineate the temporal progression of each 
fire from infrared satellite imagery (Materials and Methods). 
While this approach makes the analysis well-suited to compare 
the importance of weather, forest structure, ownership, and 
other variables compared to prior studies of fire severity, the 
rankings of weather and forest structure's effects should not be 
overinterpreted.

Second, although satellite-estimated CBI is highly correlated 
with empirical mortality assessments (Lydersen et  al.  2016; 
Miller et  al.  2009), it is ultimately an indirect measure of fire 
severity (Parks et al. 2019). This has three key implications. The 
first is that satellite-estimated CBI cannot differentiate between 
young stands that burned at high severity and old stands that 
burned at high severity, scenarios with distinct implications 
for carbon, timber loss, and wildlife habitat. The second is that 
satellite-estimated CBI does not distinguish between mortality 
caused by wildfire and mortality caused by post-fire salvage 
logging, a common practice on industrial forestland. While this 
has the potential to bias estimates of relative severity on private 
industrial versus public land (Safford et al. 2015), a prior study 
found that the size of this bias is small, even in fires where ex-
tensive salvage logging took place (Levine et al. 2022). Likely, 
this is because stands targeted for salvage logging are those 
which experienced high-severity fire effects. Finally, because 
the random forest model used to estimate CBI from satellite im-
agery incorporates climatic water deficit as a predictor, there is 
a potential for circularity in our analyses, which also include cli-
matic water deficit as a covariate. However, sensitivity analyses 
indicate that circularity did not impact the results of this study, 
which were robust to the choice of severity metric (dNBR vs. 
CBI; Appendix 4, Tables S8–S10), and the inclusion of climatic 
water deficit as a covariate (Appendix 4, Tables S11–S13).

The third key limitation of this study is that LiDAR often under-
detects smaller trees, especially under dense, multi-layered tree 
canopies (Jeronimo et al. 2018). This likely biases our estimates 
of stem density and the ladder fuels metric in areas with high 
canopy cover. However, it is unlikely that this substantially im-
pacted the outcome of the study given (i) our analysis was com-
parative, and therefore does not rely on absolute estimates of 
density or ladder fuels and (ii) lidar-derived stem density, despite 
being an underestimate of true density, had a clear relationship 
with severity. The final limitation is that while LiDAR allows us 
to quantify pre-fire forest structure at the individual tree scale, 

 13652486, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70400, W

iley O
nline L

ibrary on [10/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



13 of 16

our estimates of fire severity, and therefore mortality, are at the 
larger 30 m by 30 m scale of Landsat satellite imagery. This mis-
match in scale precludes us from capturing fine-scale changes 
in forest structure, which could have important impacts on sub-
sequent ecosystem dynamics, for example if single seed-bearing 
trees remain even in some high-severity patches. This suggests 
that efforts to gather post-fire LiDAR data would be highly valu-
able for future research.

6   |   Conclusions

Coincident with rapid anthropogenic climate change, high-
severity fire occurrence is increasing across California and the 
western United States, a trend that poses significant threats to 
socioeconomic and ecological systems including timber produc-
tion, key wildlife habitat, human health and safety, and natural 
climate solutions (Anderegg et  al.  2020; Bousfield et  al.  2023; 
Burke et  al.  2021; Davis et  al.  2019; Jones et  al.  2016; Reid 
et  al.  2016). Understanding the drivers of fire severity is thus 
critical for mitigating their worst impacts in an uncertain future.

Here we discovered that the characteristics of private industrial 
forestland are strongly correlated with increases in the probabil-
ity of high-severity fire, potentially explaining the higher inci-
dence of high severity fire in these forests (Bousfield et al. 2025; 
Levine et al. 2022; Zald and Dunn 2018). Evidence that forest 
structure has a similar effect on high-severity fire occurrence as 
extreme weather, and that these effects are magnified under ex-
treme weather conditions, suggests potential changes in current 
forest management practices are needed to mitigate fire severity 
in a warmer future, regardless of ownership. Specifically, treat-
ments that reduce stand density, increase spatial heterogeneity, 
and reduce vertical fuel continuity and loads (ladder fuels) may 
be effective at slowing increases in fire severity in California 
and the western USA.

The state of California and the US Forest Service, Pacific 
Southwest Region, recently released a plan outlining a shared 
goal of significantly increasing the annual rate of forest resto-
ration and fuel reduction treatments to address the current wild-
fire problem (California Governor's Forest Management Task 
Force 2021). While there are many impediments to reaching the 
stated goal of treating 400,000 ha annually (Clark et al. 2024), 
perhaps in the wake of recent record-breaking fire years and 
emerging scientific consensus on the benefits of thinning and 
prescribed fire (Brodie et  al.  2024; Cova et  al.  2023; Davis 
et al. 2024; Safford et al. 2022) there will be enough momentum 
to overcome these impediments across both private and public 
forestlands.
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