ENVIRONMENTAL RESEARCH LETTERS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Wildfire and forest treatments mitigate–but cannot forestall–climatedriven changes in streamflow regimes in a western US mountain landscape

To cite this article before publication: Tucker Furniss et al 2025 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ade896

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2025 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by/4.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

2 3 4 5	1 2	Wildfire and forest treatments mitigate-but cannot forestall-climate-driven changes in streamflow regimes in a western US mountain landscape
6 7 8 9	3 4	Tucker J. Furniss ^{†1} , Paul F. Hessburg ² , Derek Churchill ³ , Mark Wigmosta ^{4,5} , Nicholas Povak ^{6,7} , Zhuoran Duan ⁴ , and R. Brion Salter ⁶
10 11 12 13 14 15 16 17	5 6 7 8 9 10 11 12	 ¹ Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA ² School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA ³ Washington Department of Natural Resources, Olympia, WA, USA ⁴ Pacific Northwest National Laboratory, Richland, WA, USA ⁵ School of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA ⁶ USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA, USA ⁷ USDA Forest Service, Pacific Southwest Research Station, Placerville, CA, USA
18 19 20	13	[†] Corresponding author email: <u>tucker.furniss@uwyo.edu</u>
21 22 23 24	14	Article type: Original Research
24 25 26 27	15	Target Journal: Environmental Research Letters
28 29	16	Keywords: Climate change, DHSVM, fire ecology, forest management, ecological modeling,
30 31	17	hydrology modeling, LANDIS-II, wildfire, Pacific salmon
32 33 34 35 36	18	Abstract
37 38	19	Warming temperatures and increasingly variable precipitation patterns are reducing winter
39 40	20	snowpack and critical late-season streamflows. Here, we used two models (LANDIS-II and
41 42 43	21	DHSVM) in linked simulations to evaluate the effects of wildfire and forest management
44 45	22	scenarios on future snowpack and streamflow dynamics. We characterized the biophysical
46 47	23	attributes of the areas with the greatest potential for treatments to improve hydrologic
48 49 50	24	functioning and we examined projected trends in flow regimes over the 21st century.
51 52	25	We found that, despite a projected increase in total annual flows, there was a steep decline in
53 54	26	snowpack and late-season flows. Wildfire was an important factor influencing streamflow and
55 56 57	27	snowpack dynamics, with increasing burned area partially offsetting climate-driven declines in
58 59 60		1

snowpack and spring flows. Forest thinning treatments contributed modest increases to annual flows, although effects were overshadowed by the influences of climate and wildfire. Warmer winter temperatures extinguished snowmelt-driven flows in low- and mid-elevation watersheds. causing a transition from spring snowmelt- to autumn rain-dominated streamflow regimes. Our results complement prior empirical studies showing that forest treatments can improve snowpack retention and annual streamflow, and they emphasize the importance of wildfire as a primary factor governing landscape hydrology. We found that neither land management practices nor wildfire could completely compensate for the top-down controls of future climate on landscape hydrology. Declines in snowpack retention and a regime shift in the timing of peak flows will have dramatic consequences for forest health, human water resources, and Pacific salmon populations.

39 Introduction

Warming temperatures and increasing variability in precipitation are causing declines in winter snowpacks and late-season low flows throughout western North America (Mote et al. 2018, McCabe and Wolock 2009). Forests and their disturbance processes also mediate snowpack dynamics and surface water flows (Bisson et al. 2003, Boisramé et al. 2017, Nippgen et al. 2011, Jones et al. 2012). Yet, it is not clear how the bottom-up influence of vegetation may amplify or impede the top-down influences of climate, or similarly, how climate effects on forests (Aitken et al. 2008, Germain and Lutz 2020, McDowell et al. 2020, Povak and Manley 2024) will interactively mediate future trends in landscape hydrology.

48 The role of forest disturbances

Historically, frequent wildfire in the dry landscapes of western North America maintained a complex mosaic of forests and nonforests (Churchill et al. 2013, Hessburg et al. 2016, 2019,

Hagmann et al. 2021, Povak et al. 2023). Forests were patchy and fractional coverage was low (Hessburg et al. 2005), and this heterogeneity maintained snowpack late into the spring (Dickerson-Lange et al. 2021, Boardman et al. 2025). Forest densification over the past century has had detrimental impacts on snowpack in some forests as denser tree cover intercepts more snow in the canopy (Dickerson-Lange et al. 2021, Sun et al. 2022), increases evapotranspiration (ET), and can hasten spring snowmelt via decreased albedo and re-emitted long-wave radiation (Lundquist et al. 2013).

Wildfire effects on streamflow dynamics vary in both space and time (Goeking and Tarboton 2022, Biederman et al. 2022). Initially, wildfires increase streamflows by reducing ET and vegetation cover (Seibert et al. 2010, Boisramé et al. 2017, Maxwell and St Clair 2019, Saksa et al. 2020), but post-fire vegetation responses (e.g., rapid growth of shrubs) can offset and even reverse these effects within a short time frame (Goeking and Tarboton 2020). Severe fire also changes soil hydrophobicity and infiltration (Ebel and Moody 2013, Loiselle et al. 2020), altering hillslope erosion processes, groundwater recharge, and water quality.

65 The role of forest treatments

Forest treatments are underway throughout the mountain West to reduce wildfire risk and
bolster climate resilience (WA DNR 2024, USDA Forest Service 2022). Thinning has been
shown to increase snowpack retention and reduce ET (Sun et al. 2018, Lundquist et al. 2013,
Dickerson-Lange et al. 2023), which together can increase streamflows (Jones and Post 2004,
Saksa et al. 2017). Thus, forest adaptation treatments (i.e., selective thinning to increase climate
and wildfire resilience) may have the potential to increase winter snowpack and late-season low
flows (Saksa et al. 2020, Boardman et al. 2025), thereby achieving multiple ecological benefits
and mitigating impacts of climate warming on snowpack-dependent species such as Pacific

2 3 4	74	salmon (Flitcroft et al. 2016, Fullerton et al. 2022). Thinning treatments also impact forest soils,
5 6	75	but the focus of this study is on the above-ground vegetation dynamics so we did not consider
7 8 9	76	changes in soil properties in our analyses.
10 11 12	77	Objectives
13 14 15	78	Here, we combined a large forest landscape succession and disturbance model (LANDIS-II;
16 17	79	Scheller et al. 2007) with a process-based distributed hydrology-soil-vegetation model
18 19	80	(DHSVM; Wigmosta et al. 1994) to disentangle effects of forest treatments, vegetation regrowth,
20 21 22	81	and fire on mountain snowpack and flow regimes in the Eastern Cascades of Washington. We
22 23 24	82	addressed three research objectives:
25 26	83	1) Evaluate the interactive effects of climate, wildfire, and forest treatments on future
27 28	84	snowpack and streamflow.
29 30 31	85	2) Compare several alternative management strategies (thinning, prescribed fire, and wildland
32 33	86	fire use) on landscape hydrology over a 100-yr simulation period.
34 35 36	87	3) Identify the biophysical characteristics and treatment rates in areas with the greatest
37 38 39	88	potential for treatment improvements to snowpack and streamflow.
40 41 42	89	Methods
43 44	90	Study area
45 46 47	91	We conducted our study in the Wenatchee and Entiat sub-basins, a 452,420-ha landscape on the
48 49	92	eastern slopes of the Cascade Mountains in central Washington State (Fig. 1) with elevations
50 51	93	ranging from 187 m to 2870 m. We used the Hydrologic Unit Codes (HUC) to delineate the
52 53	94	study domain, with sub-basins (defined as 8-digit HUCs; Seaber et al. 1987) used to define our
54 55 56 57	95	study domain and subwatersheds (HUC12-level) used to subdivide the study area into smaller
58 59 60		4

domains for subsequent analyses. The climate is characterized by warm-dry summers, cold-wet
winters, and most precipitation falling as snow. Land ownership is primarily public (USDA
Forest Service), with 54% of the study area managed as wilderness or roadless areas (hereafter,
"wildlands") and 31% as actively managed forests (Table 1, Fig. 1). The remaining area
comprises industrial timber lands (all privately owned), urban and rural development, and
agricultural lands.

Vegetation in the study area is heterogeneous due to steep elevational gradients, dissected terrain, and complex disturbance histories (Fig. 1; Povak et al. 2022, Furniss et al. 2022). Dry forests exist at lower elevations and south-facing slopes feature shrub-steppe communities alongside open canopy ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) forests. These dry forests were historically subject to low-and mixed-severity fires with intervals of 5-25 years (Everett et al. 2000, Hessburg and Agee 2003, Hessburg et al. 2007). Moist forests exist at mid-elevations and on steep north facing slopes, dominated by Douglas-fir, western larch (Larix occidentalis Nutt.), western white pine (Pinus monticola Douglas ex D. Don), and grand fir (Abies grandis (Douglas ex D. Don) Lindley). The moist forests also experienced mixed-severity burns, with a higher percentage (20–25%) of highseverity and longer fire return intervals of 25-80 years (Hessburg et al. 2005, 2007). Cold forests in upper elevations are dominated by subalpine fir (Abies lasiocarpa (Hook.) Nutt.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), whitebark pine (Pinus albicaulis Engelm.), and subalpine larch (Larix lyallii Parl.). Cold forests here experienced moderate- and high-severity fires with return intervals of 75–150 years (Povak et al. 2023, 2025, Prichard et al. 2017).

117 Landscape simulation modeling

We used LANDIS-II with the NECN v6.8 (Scheller et al. 2011), SCRPPLE v3.2 (Scheller et al.

2019), and Biomass Harvest v4.0 (Gustafson et al. 2000) extensions to simulate vegetation dynamics (growth, succession, recruitment, and mortality), wildfire, and climate adaptation treatments (mechanical thinning, Rx fire, and wildland fire use) over a 100-yr simulation period (2020-2120). Wildfire and harvest activities were simulated on a 1-yr timestep, with regeneration in disturbed pixels applied following the disturbance. Forest succession in the absence of disturbance was simulated at a 10-yr timestep. We classified the initial landscape into eight land cover types to delineate zones required for climate inputs and harvesting prescriptions: grassland, shrubland, hardwood, alpine meadow, dry mixed conifer, moist mixed conifer, cold-moist conifer, and cold-dry conifer. Initial vegetation layers were derived from TreeMap (Riley et al. 2021), a raster-based imputation of forest inventory data (Forest Inventory and Analysis [FIA], circa 2016), projected to the 90-m spatial resolution of our model. We linked the imputed FIA plot codes from TreeMap with the full FIA database to derive attributes not directly available in the TreeMap tree list (tree age, understory composition). Overstory vegetation was represented at the species level, and we grouped understory vegetation into four functional types (nitrogen (N) fixing resprouters, non-N-fixing resprouters, non-N-fixing non-resprouters, and grass/forbs). In LANDIS-II, vegetation in each pixel is given as the amount of biomass per "cohort" (unique species and size class combinations), with an unlimited potential number of cohorts per pixel (e.g., a simple pixel may have 100 g/m² of 50-yr old Douglas fir, 150 g/m² of 80-yr old ponderosa pine, 50 g/m² of N-fixing resprouting shrubs, and 2 g/m^2 of grass/forb).

Evaluating the performance of forest landscape models is challenging because model outputs cannot be distilled into a single metric (e.g., streamflow) that can be compared against empirical data. Consequently, model performance must be evaluated by comparing model performance

2	
3	
4	
5	
6	
7	
8	
9	
- 10	
11	
12	
12	
17	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
22 28	
20 20	
10	
-+U // 1	
41 42	
+∠ ∕\?	
43	
44	
45	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

142	among multiple metrics that all vary in space and time (biomass trajectories by forest type, area
143	burned, fire sizes, patch size distributions, etc.). In short, we calibrated and validated the LANDIS-
144	II model using empirical data (MTBS and FPA-FOD datasets; Eidenshink et al. 2007, Short et al.
145	2022) and forest growth estimates from the Forest Vegetation Simulator (FVS; Crookston and
146	Dixon 2005) and found that the LANDIS-II model could reliably simulate forest growth and
147	wildfire dynamics in the study landscape. Full details regarding model development, calibration,
148	and validation were documented in Furniss et al. 2022 and 2023.
149	Future climate forecasts were generated using the MACAv2-METDATA dataset (Abatzoglou
150	and Brown 2012). Climate for years 2100-2120 were not available in the MACA dataset (it ends in
151	2099), so we performed a random resampling procedure using years 2080-2099 to extend the
152	dataset through 2120. We used only the RCP8.5 climate scenario to focus on the effects of
153	different management and wildfire scenarios rather than on uncertainty in climate forecasts.
154	Management scenarios
155	We employed a partial factorial design of treatment tactics including mechanical thinning
156	("harvest"), prescribed fire ("Rx"), and wildland fire use ("WFU") to compare tradeoffs and
157	synergies between strategies. We designed management scenarios to reflect real-world objectives
158	for the land ownership and management zones in the study area, and treatment rates were set to
159	approximate current implementation rates (Table 1).
160	The four management scenarios were: (1) Wildfire + WFU, (2) Wildfire + Rx fire + WFU,
161	(3) Wildfire + Harvest, and (4) Wildfire + Harvest + WFU. We also simulated two reference
162	scenarios to compare against treatment scenarios: (1) "Grow Out", a simulation of forest growth
163	without any wildfire or treatments, and (2) Wildfire Only, which included wildfire and "business-
164	as-usual" suppression practices (calibrated to suppressed wildfire activity from 1984-2019).

165	We applied different thinning-based mechanical harvest treatments based on the forest type
166	and land ownership objectives within each of four management zones (Table 1; Fig. 1). These
167	treatments applied differential cut rates that were based on the cohorts present within each stand
168	at the point of harvest, allowing treatments to be "customized" to each stand. These treatment
169	methods have been described in greater detail by Furniss et al. (2023, 2024). Briefly, dry forests
170	had thinning from below (~90% reduction in surface and ladder fuels) to achieve fuel reduction
171	objectives in large treatment patches (20-100 ha in size); moist forests had variable retention
172	patch cuts (1-3 ha gap size) to increase heterogeneity (~75% mean reduction in density for trees
173	<120 years old, no removal of older trees); industrial timber lands had clearcutting to maximize
174	economic returns (100% harvest); and in wildlands, we did not apply any mechanical treatments.
175	Simulated harvest treatments occurred at the patch-level (5-20 ha), where patches were
176	randomly selected and evaluated for harvest eligibility. Patches were developed using an
177	unsupervised aggregation algorithm that identified spatially contiguous polygons sharing similar
178	ownership, topographic setting, and potential vegetation. Treatments started in one patch and
179	would spread to additional patches until the target harvest area was reached. Patches could be
180	treated multiple times during the 100-yr simulation, with a minimum re-treatment interval set to
181	prevent patches from being re-treated continuously without allowing for realistic regrowth
182	between treatment cycles (10 years for dry forests, 30 years for moist forests).
183	We simulated wildland fire use (WFU) management practices by adjusting the level of
184	suppression applied compared to the baseline Wildfire Only scenario. For the WFU scenarios, we
185	applied less suppression effort to natural ignitions during mild and moderate weather conditions

in wildlands. In contrast, more suppression effort was applied in urban/rural areas and in the
wildland urban interface. For the Rx fire scenarios, Rx fire was applied to approximately 5,000

י ז	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
7J 77	
44	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	

60

ha/year in all USFS lands, including wildlands and actively managed forests. Additional details
and specific model parameters may be found in Furniss et al. 2023 and 2024.

190 Hydrology modeling

191 We modeled treatment effects on flow regimes by translating annual LANDIS-II outputs into input layers for the DHSVM (Wigmosta et al. 1994, Furniss et al. 2023, Povak et al. 2022). This 192 resulted in dynamic vegetation surfaces that were updated annually throughout the 100-vr 193 simulation period for four key vegetation parameters: leaf area index-LAI, canopy height (HT), 194 195 fractional cover (FC), and forest type. For DHSVM inputs that were not available directly from 196 LANDIS-II (HT and FC), we used Forest Inventory and Analysis (FIA) data to fit generalized linear mixed effects models that estimated plot-level HT and FC. The HT model used ln(age) and 197 In(biomass) to predict individual tree height with species and forest type as fixed effects, and we 198 calculated plot-level canopy height as the 90th percentile of tree heights. The FC model used a 199 200 third-order polynomial of stand biomass, stand age, and elevation to predict fractional coverage, 201 with forest type as a fixed effect. We fit these models using the lme4 package in R (Bates et al 2015, R Core Team 2023). 202

203 The DHSVM model was calibrated using historical climate data from the 1/16° Livneh dataset (2015) in conjunction with empirical observations of snow water equivalent (SWE) from 204 205 a nearby SNOTEL station (Trinity Snow Telemetry site) and streamflow records for the 206 Wenatchee and Entiat sub-basins (USGS gauges 12456500, 1245800) for water years 1997-2003 and 1966-1971, respectively. We chose these water years to isolate periods of streamflow that 207 were minimally impacted by water management (dam releases), upstream water withdrawals 208 209 (diversions for agriculture), and winter icing conditions. Model performance was evaluated using 210Nash Sutcliffe Efficiency (NSE) and Kling-Gupta Efficienty (KGE) metrics, resulting in NSE =

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
ΔΔ	
15	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
J/	
28	
59	
60	

211	0.758 and KGE = 0.786 for the Entiat watershed and NSE = 0.796 and KGE= 0.873 for the
212	Wenatchee watershed. DHSVM was calibrated using current vegetation as high-resolution maps
213	of historical vegetation for the calibration period do not exist.
214	Future climate forecasts were derived from the MACAv2-LIVNEH climate dataset
215	(Abatzoglou and Brown 2012). Future landscape hydrology was summarized using peak SWE
216	amount, peak SWE date, monthly flow, total annual flow, and spring melt-out date (first snow-
217	free day in the spring). Snow-based variables were generated as 90-m raster maps and flow
218	variables were summarized at the HUC12 level. The raster-based hydrologic outputs were
219	generated at an annual resolution and streamflow by HUC12 was output monthly.
220	Treatment efficacy
221	We assessed positive treatment effects on streamflow by comparing hydrology outputs between
222	the Wildfire Only scenario and the four alternative future management scenarios. We integrated
223	these metrics into an overall "treatment efficacy" value by calculating landscape-scale mean
224	based on area-weighted values for each patch, then calculating the difference in landscape-level
225	mean between scenarios. Positive treatment efficacy indicated that a treatment scenario resulted
226	in better-than-expected results across hydrological metrics compared to the Wildfire Only
227	scenario.

Results

There was considerable interannual variability in future landscape hydrology, but important trends emerged over the 100-yr simulation period (Fig. 2). Across all scenarios, peak snow water equivalent (SWE) decreased from 2020-2120, with most of that decline occurring during the first half of the simulation (Fig. 2). Mean annual flows declined until ~2060 then increased from

ו ר	
2	
3	
4	
5	
6	
7	
, Ω	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
20	
37	
38	
39	
40	
41	
42	
⊿2 ⊿2	
43	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
56	
57	
57	
5 X	

60

248

2060-2120, despite a relatively steady trend in precipitation (Fig. S1). Peak SWE date did not
show a sustained shift in either direction, while average spring melt-out date shifted earlier by ~3
weeks from early-June to mid-May (Fig. 2).

Differences between the *Grow Out* scenario (no wildfire or treatment) and the *Wildfire Only* scenario highlighted the effects of wildfire on flow regime. In the absence of wildfire, peak SWE continued to decline throughout the latter half of the century, while scenarios involving wildfire had relatively stable levels of peak SWE from 2080-2120. The *Grow Out* scenario also had lower streamflows compared to *Wildfire Only*, and that difference increased over the course of the simulation (Fig. 2).

There was enormous interannual variability in all hydrology metrics (Fig. S4). Interannual fluctuations in SWE and flows were much greater in magnitude than both the differences between scenarios and the long-term trend (Fig. 2). Variability in peak SWE date and spring melt-out increased over the simulation period, while variability in peak SWE amount and mean annual flows remained relatively constant (Fig. S4). This variability was reduced, but not eliminated, when looking at 10-yr rolling means (Fig. 2).

Treatment efficacy

Examining treatment effects further revealed differences among management scenarios. Scenarios involving mechanical harvest produced the greatest SWE and mean annual flow for the first half of the simulation period. After an uptick in fire activity around 2060 (Fig. S2), however, this trend shifted and the two scenarios with the greatest high-severity area burned (*Wildfire Only* and *Wildfire + Harvest*) had the highest SWE and streamflows (Fig.3). Despite the gradual increase in wildfire activity that we observed among all scenarios, the shifting scenario ranking in response to feedbacks in wildfire activity (Furniss et al. 2024, Povak et al.

256	2023) emphasizes the dominant role of wildfire on hydrologic functioning in this landscape.
257	At the HUC12-scale, total area treated was positively related to increases in mean annual
258	flows, although the relationship was weak ($R^2 = 0.07$; Fig. 4). Treating any amount was often
259	enough to increase flows, but treating at least 50% of the total area was required to reliably
260	increase flows in some watersheds. This treatment ratio is obviously sensitive to the intensity of
261	treatments in our simulations, and further work will be required to examine how treatment area
262	and intensity may interact to modify the treatment area required to have a tangible impact on
263	landscape hydrology. Proportion area burned was the strongest predictor of increased flows ($R^2 =$
264	0.32), while total area burned was also weakly related. Although we did not directly consider fire
265	severity in this analysis, area burned was positively correlated with proportion of high-severity
266	(Fig. S2) so it is likely that the subwatersheds with the greatest area burned also burned with at
267	higher severities. Mean burned per HUC12 was nearly twice the area affected by harvest
268	treatments (mean area treated per HUC12 = $2,200$ ha, mean area burned per HUC12 = $5,800$ ha;
269	Fig. 4), causing wildfire to be the primary driver of flows at the landscape scale given the
270	treatment area and intensity applied in our simulations. Neither elevation nor HUC12 size were
271	related to treatment effects on streamflow (Fig. 4, bottom row).
272	Overall treatment efficacy was highest in dry and moist mixed-conifer vegetation types (Fig.
273	5), which had the greatest total area and proportion area treated. Treatment efficacy was also
274	high in hardwood forests despite having low total and proportion area treated, possibly because
275	these forests are primarily occupying riparian habitat and may therefore have a disproportionate
276	impact on hydrology. Grouping by land ownership type revealed that treatment efficacy was
277	highest for industrial forests, followed by actively managed federal lands (Fig. 6). These stand-
278	scale effects did have significant impact on landscape-scale results since private lands covered

only 4% of the landscape (Table 1; Fig. 6). Although treatment efficacy was lower in actively
managed federal forests, they covered a much larger area (31%) and therefore contributed more
to the landscape-level results.

282 Changes in Seasonal Flow

Monthly hydrographs revealed how changes in temperature and snowpack dynamics caused changes in the timing of snowmelt and streamflow throughout the year. We observed a significant decline in late-season (August - September) streamflows over the course of the simulation the entire study area, and a shift from snowmelt- to rain-dominated flow regimes in low- and middle-elevation watersheds (Fig. 7). Peak flows in upper-elevation watersheds (greater than ~1,200 m) continued to be driven by spring snowmelt, but increasing temperatures and rain-on-snow events led to the emergence of a secondary peak in the fall and lower late-season flows.

This shift in streamflow regimes was a gradual transition rather than a distinct tipping point. Thus, we found it useful to examine results by grouping decades relative to the timing of this transition from a snow- to rain-dominated streamflow regime. This revealed two distinct regimes: the early-mid-21st century, where the hydrograph was dominated by spring snowmelt among all watersheds, and the early-22nd century where peak flows in low- and mid-elevation watersheds were driven by fall rains. The late-21st century was a period of transition, where fall flows increased steadily among all watersheds and eventually overtook the spring peak at lower elevations. Below, we further examine projected trends in the seasonal hydrographs during each of these three periods.

Early-mid 21st century (2020-2060): The seasonal hydrograph under present-day climate conditions were characterized by a large, snowmelt-dominated peak in the spring

2							
3 4	302	through early summer (June-July) that was evident across all watersheds in the sub					
5 6 7 8 9 10 11 12 13	303	(Fig. 7). "Harvest" scenarios had subtle, yet still detectable, effects on these trends, with					
	304	mechanical treatments conferring a slight increase in spring flows (Fig. 8), especially in					
	305	actively managed watersheds (see Fig. S5).					
	306	• Late 21 st century (2060-2100): This was a period of transition, with peak flows in low-					
14 15 16	307	and mid-elevation watersheds shifting from spring to fall by the latter decades of the					
17 18	308	century (red and orange lines in Fig. 7). Fall flows increased in high-elevation					
19 20	309	watersheds, but not enough to surpass the snowmelt-driven peak in the spring. There was					
21 22	310	a growing divergence between the Grow Out scenario and Wildfire Only, while the					
23 24 25	311	differences between treatment scenarios remained subtle (Fig. 8) as the relative impacts					
25 26 27 28 29 30 31 32	312	of wildfire began to overshadow the effects of mechanical treatments (Fig. 3).					
	313	• Early 22 nd century (2100-2120): The shift from spring snowmelt- to fall rain-dominated					
	314	streamflow regimes in warmer watersheds was solidified during this period as the fall					
33 34	315	peak grew and the spring peak diminished. High elevations remained dominated by a					
35 36 27	316	snowmelt-driven peak in the spring, although the fall flows developed into a prominent					
37 38 39	317	second peak (Fig. 7). Positive treatment effects were dwarfed by wildfire influences,					
40 41	318	despite continuous application of mechanical treatments throughout the simulation.					
42 43 44 45	319	Discussion					
46 47	320	Ongoing climate changes are causing widespread declines in snowpack across the western US					
48 49 50	321	(Mote et al. 2018). Our modeling demonstrates how these changes impact snow retention and					
50 51 52	322	streamflows at the landscape scale, and how future wildfire and management scenarios can					
53 54	323	mediate top-down climate impacts. We found that in this mountainous, snow-dominated study					

324 region, projected climate trends will result in more winter precipitation falling as rain, earlier

ו ר		
2 2		
5 ⊿		
4		
5		
6		
/		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
2	- २	
2	2 ۵	
2 ว	5	
2 ว	د م	
2	0	
2	/	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	õ	
4	1	
٥	;)	
⊥ ⊿	2	
+ ∕	∧	
+ ^	+	
4 1	5 6	
4	0	
4	/ c	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	á	

345

346

347

60

snowmelt dates, and an overall reduction in peak SWE and late-season streamflows. Mechanical 325 326 treatments increased snowpack retention (Fig. 2) and maintained higher spring flows (Figs. 8, S5), but these effects were small compared with the impact of wildfire (Fig. 3). The beneficial 327 328 impact of wildfires and thinning on flows grew over time (Figs. 2, 8), but simulated management 329 actions could not offset the effects of warming on the shifting seasonality of flows (Fig. 7). Climatic influences drove a shift from snow- to rain-dominated flow regimes, especially for lowand mid-elevation watersheds, demonstrating the overriding effects of climate warming on forest 331 332 landscape hydrology. 333 The role of wildfire Despite relatively stable levels of annual precipitation over the coming century (Fig. S1), forest 334 335 regrowth and wildfire dynamics shaped trends in mean annual flows over the course of the simulation (Fig. S3). Mean annual flows tracked trends in forest biomass, with a decline during the 336 first half of the simulation period as forest biomass accumulated (Figs. 2, S3) followed by an increase 337 during the latter half of the simulation as wildfire activity accelerated (Fig. S2) and forest biomass 338 began to decline (Fig. S3). The finding that mean annual flows remained relatively stable under the 339 340 baseline Grow Out scenario underscores the importance of vegetation and disturbance regimes on streamflow dynamics. 341 342 Evidence for the dominance of wildfire as a driver of future landscape hydrology was evident in other results as well. The differences between the Wildfire Only and Grow Out scenarios were 343

ultimately far greater than differences between active management scenarios (all of which contained wildfire), and the proportion area burned was the strongest predictor of improvements to hydrology metrics ($R^2 = 0.32$; Fig. 4). Together, these results underscore the importance of wildfire as a keystone process in fire-adapted, wildland-dominated landscapes of the western US.

2	
5 ⊿	
4	
5	
6	
7	
8	
9	
1()
11	I
12)
1:	2
1	, 1
10	+
1.) -
10	2 7
18	3
19	J
2()
2	I
22	2
23	3
24	1
25	5
26	5
27	7
29	2
20	י ר
23	,
30)
3	
32	2
33	3
34	1
35	5
36	5
37	7
38	3
30)
Δ(,)
۸ ۵1	1
т л^	י ר
+-∡ ∕\^	<u>`</u>
4:	2 4
44	+
45)
46	S
47	7
48	3
49	9
50)
51	I
52	2
5	3
5,	1
51	т 5
50	י ב
50	2
57	/
58	3
59)
6()

While the scenarios with the greatest area burned (*Wildfire Only* and *Wildfire + Harvest*) had the greatest improvements to hydrology metrics, these benefits were achieved at the expense of other important ecosystem services (e.g., carbon storage), reflecting the inevitability of tradeoffs in managing for diverse ecosystem services. Recent papers by Furniss et al. (2023, 2024) and Povak et al. (2022, 2024) explore these tradeoffs in greater detail.

353 These results provide evidence for the strategic use of wildfire to partially compensate for climate 354 change impacts on snowpack and streamflow (North et al. 2015, 2021, 2024, Calkin et al. 2015, Stephens et al. 2016). A key finding was that hydrology metrics responded positively to area burned, 355 regardless of whether that area burned was achieved through Rx fire, WFU, or wildfire. Wildfire will 356 357 continue to affect far more area than is treatable with mechanical methods alone (Churchill et al. 358 2022, Larson et al. 2022, WA DNR 2022), and wildfire is the dominant driver of vegetation dynamics and climate adaptation in forests of the Interior West (North et al. 2012, Hessburg et al. 359 2021, 2022, Stephens et al. 2021, Furniss et al. 2024). Restoring naturally diverse patch size distributions using mixed- and high-severity fire in subalpine and moist-mixed conifer forests may be 361 362 an appropriate target for WFU practices (Hessburg et al. 2007, 2016, 2021), and our results 363 demonstrate the potential for such practices to improve snowpack retention and late-season streamflows as well. 364

365 Mechanical treatments and wildfire management decisions

Our results suggest that treatments can have beneficial impacts on mountain hydrology if they are used to increase—rather than decrease—area burned (Reinhard et al. 2008, North et al. 2012, Young et al. 2019, Thompson et al. 2022). The key to achieving benefits is that fuel reduction and climate-adaptation treatments are strategically applied to facilitate *more* wildfire, enabling managers to let more fires burn while protecting human communities and vulnerable ecosystems.

1	
2	
3	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
10	
+0 40	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/ 52	
58	
59	

60

Reducing the existing wildfire deficit (Parks et al. 2025) is a key part of climate and wildfire adaptation strategies (Schoennagel et al. 2017, North et al. 2015), and intentionally preparing landscapes for fire using landscape restoration principles (Hessburg et al., 2015, Stephens et al., 2021) can result in more desirable wildfire effects (Taylor et al. 2022, Chamberlain et al. 2024, Shive et al. 2024). If treatments are instead used to increase suppression efficacy and reduce overall acres burned, our results indicate there would be negative consequences for snowpack retention and streamflows.

378 Limitations and generalizability

The spatial resolution of our model (90-m cells) did not allow us to account for fine- to meso-379 scale (<1 ha) variability in canopy gap patterning (sensu Larson and Churchill 2012, Churchill et al. 2013, Chamberlain et al. 2023), or to simulate restorative treatments in riparian areas such as 381 floodplain restoration and beaver introduction (sensu Justice et al. 2017, Fullerton et al. 2022). 382 383 Fine-scale heterogeneity and riparian restoration have been shown to mediate snowpack dynamics (Lundquist et al. 2013, Sun et al. 2018, Dickerson-Lange et al. 2023, Justice et al. 2017), and it is 384 therefore possible that we underestimated treatment effects due to our modeling resolution. This 385 386 limitation reflects the fundamental tradeoff between resolution and scale that exists in any spatial 387 simulation model.

Another limitation is that we did not consider wildfire effects on soil infiltration rates in DHSVM. Wildfire and thinning treatments do impact soil carbon values in LANDIS-II, but we did not use these values to update the DHSVM soil layers. The purpose of this study was to focus on above-ground vegetation dynamics, so we kept our model integration limited to changes in vegetation cover and height.

The results of this study are most relevant in fire-adapted forest landscapes with cold winters and

large snowpacks. The importance of snowpack retention is obviously much lower in landscapes
without a persistent snowpack, and we would therefore expect treatments and wildfire to have less of
an impact on snowpack and streamflow dynamics in rain-dominated landscapes. We also recognize
that wildfire is not always an appropriate management tool, and restoring natural wildfire regimes
may be an unrealistic goal due to patterns of dispersed human development and rapidly shifting
climatic conditions.

400 Downstream implications

Forest ecosystems and aquatic species throughout the western United States are dependent on mountain snowpacks to provide snowmelt late into the summer when precipitation is low and temperatures are high. Human communities and water resource managers are similarly dependent on the winter snowpack to serve as a natural reservoir with storage capacity that can greatly exceed the volume of water stored in artificial reservoirs. Foundational changes in the timing of streamflow, such as those we observed in this study, are likely to have profound consequences for ecosystems and human communities that are adapted and accustomed to snowmelt-derived flow regimes. These changes will increase summer water deficit in forest ecosystems, reshaping forest elevational zones and negatively impacting fish and wildlife species that rely on snowmelt and late-season streamflows. This offers a dire warning for Pacific salmon and coldwater trout species, as snowmelt is of acute importance for maintaining cool stream temperatures and providing spawning habitat (Mote et al. 2003, Battin et al. 2007, Naik and Jay 2011, Wenger et al. 2011, Falke et al. 2015). The effects of altered streamflow regimes on interconnected ecosystems is an important topic for future research as these changes will have major downstream consequences for ecosystem health and resilience (Bisson et al. 2003).

416 Conclusions

Projected warmer winter temperatures will increase the proportion of precipitation falling as rain, greatly reducing spring snowpacks and late-season flows. Elevated future wildfire activity may offset some of these climate impacts, but neither wildfire nor mechanical treatments is likely to forestall a transition from snow- to rain-dominated streamflow regimes in low- and midelevations in the eastern Cascades by the end of the 21st century. The benefits of thinning in our study were relatively small compared to the overwhelming effects of wildfire, underscoring the importance of wildfire as a primary driver of landscape and watershed dynamics. Our results provide support for more widespread use of wildfire in landscape management, and suggest that landscape-scale adaptation treatments involving the restoration of natural wildfire regimes may reduce or delay some of the most deleterious effects of warming on future snowpack and streamflows.

428 Acknowledgements

We thank Sara Germain and two anonymous reviewers for helpful comments on a prior draft of this manuscript. This work was partially funded by the Washington State Department of Natural Resources (DNR; agreement #22CO11261922016), the US Department of Energy (USDOE) Bioenergy Technologies Office (DE-SC0017519/0005), and the Pacific Northwest Research Station (PNWRS). The senior author was previously supported through the Research Participation Program at the USDA-FS, PNWRS, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the USDOE and the PNWRS. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The views of the authors expressed herein do not represent the official views of the DNR, USDOE, ORISE, the USDA-FS or the PNWRS.

2
2
5
4
5
6
7
8
o o
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
25
35
36
37
38
39
40
41
12
ד∠ ⊿ר
43 44
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
50
22
60

439	Literature cited
440	Ager, A. A., A. M. Barros, and M. A. Day. 2022. Contrasting effects of future wildfire and forest
441	management scenarios on a fire excluded western US landscape. Landscape Ecology:1-22.
442	https://link.springer.com/article/10.1007/s10980-022-01414-y.
443	Aitken, S. N., S. Yeaman, J. A. Holliday, T. Wang, and S. Curtis-McLane. 2008. Adaptation, migration
444	or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1(1):95-
445	111. <u>https://doi.org/10.1111/j.1752-4571.2007.00013.x</u>
446	Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4.
447	Journal of Statistical Software 67(1). https://doi.org/10.18637/jss.v067.i01
448	Bart, R.R., Ray, R.L., Conklin, M.H., Safeeq, M., Saksa, P.C., Tague, C.L. and Bales, R.C., 2021.
449	Assessing the effects of forest biomass reductions on forest health and streamflow. Hydrological
450	Processes, 35(3), p.e14114. https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.14114.
451	Battin, J., M. W. Wiley, M. H. Ruckelshaus, R. N. Palmer, E. Korb, K. K. Bartz, and H. Imaki. 2007.
452	Projected impacts of climate change on salmon habitat restoration. Proceedings of the National
453	Academy of Sciences 104(16):6720-6725. https://doi.org/10.1073/pnas.0701685104.
454	Biederman, J. A., M. D. Robles, R. L. Scott, and J. F. Knowles. 2022. Streamflow Response to
455	Wildfire Differs With Season and Elevation in Adjacent Headwaters of the Lower Colorado River
456	Basin. Water Resources Research 58(3):e2021WR030687. https://doi.org/10.1029/2021WR030687
457	Bisson, P.A., Rieman, B.E., Luce, C., Hessburg, P.F., Lee, D.C., Kershner, J.L., Reeves, G.H. and
458	Gresswell, R.E., 2003. Fire and aquatic ecosystems of the western USA: current knowledge and key
459	questions. Forest Ecology and Management, 178(1-2), pp.213-229.
460	https://www.sciencedirect.com/science/article/pii/S037811270300063X.
461	Boardman, E. N., Z. Duan, M. S. Wigmosta, S. W. Flake, M. R. Sloggy, J. Tarricone, and A. A.

1 2		
3 4	462	Harpold. 2025. Restoring Historic Forest Disturbance Frequency Would Partially Mitigate Droughts
5 6	463	in the Central Sierra Nevada Mountains. Water Resources Research 61(4):e2024WR039227.
7 8 9	464	https://doi.org/10.1029/2024WR039227
10 11	465	Boisramé, G., S. Thompson, B. Collins, and S. Stephens. 2017. Managed wildfire effects on forest
12 13 14	466	resilience and water in the Sierra Nevada. Ecosystems 20(4):717–732.
14 15 16	467	https://doi.org/10.1007/s10021-016-0048-1
17 18	468	Calkin, D. E., M. P. Thompson, and M. A. Finney. 2015. Negative consequences of positive feedbacks
19 20 21	469	in US wildfire management. Forest Ecosystems 2(1):9. https://doi.org/10.1186/s40663-015-0033-8
22 23	470	Cansler, C. A., V. R. Kane, P. F. Hessburg, J. T. Kane, S. M. A. Jeronimo, J. A. Lutz, N. A. Povak, D.
24 25 26	471	J. Churchill, and A. J. Larson. 2021. Previous wildfires and management treatments moderate
20 27 28	472	subsequent fire severity. Forest Ecology and Management:119764.
29 30	473	https://doi.org/10.1016/j.foreco.2021.119764
31 32 33	474	Chamberlain, C.P., Cova, G.R., Cansler, C.A., North, M.P., Meyer, M.D., Jeronimo, S.M. and Kane,
34 35	475	V.R., 2023. Consistently heterogeneous structures observed at multiple spatial scales across fire-
36 37	476	intact reference sites. Forest Ecology and Management, 550, p.121478.
38 39 40	477	https://www.sciencedirect.com/science/article/pii/S0378112723007120.
41 42	478	Chamberlain, C. P., B. N. Bartl-Geller, C. A. Cansler, M. P. North, M. D. Meyer, L. van Wagtendonk,
43 44	479	H. E. Redford, and V. R. Kane. 2024. When do contemporary wildfires restore forest structures in
45 46 47	480	the Sierra Nevada? Fire Ecology 20(1):91. https://doi.org/10.1186/s42408-024-00324-5
48 49	481	Christensen, P., Gillingham, K. and Nordhaus, W. 2018. Uncertainty in forecasts of long-run economic
50 51	482	growth. Proceedings of the National Academy of Sciences, 115(21), pp.5409-5414.
52 53 54	483	https://www.pnas.org/doi/abs/10.1073/pnas.1713628115.
55 56 57	484	Churchill, D.J., Larson, A.J., Dahlgreen, M.C., Franklin, J.F., Hessburg, P.F. and Lutz, J.A., 2013.
58 59 60		21

2		
3 4	485	Restoring forest resilience: from reference spatial patterns to silvicultural prescriptions and
5 6	486	monitoring. Forest Ecology and Management, 291, pp.442-457.
7 8 9	487	https://www.sciencedirect.com/science/article/pii/S0378112712006834.
10 11	488	Churchill, D. J., S. M. A. Jeronimo, P. F. Hessburg, C. A. Cansler, N. A. Povak, V. R. Kane, J. A. Lutz,
12 13	489	and A. J. Larson. 2022. Post-fire landscape evaluations in Eastern Washington, USA: Assessing the
14 15 16	490	work of contemporary wildfires. Forest Ecology and Management 504:119796.
10 17 18	491	https://doi.org/10.1016/j.foreco.2021.119796
19 20 21	492	Crookston, N. L., and G. E. Dixon. 2005. The Forest Vegetation Simulator: A review of its structure,
22 23	493	content, and applications. Computers and Electronics in Agriculture. 49(1): 60-80.
24 25	494	https://www.sciencedirect.com/science/article/pii/S0168169905000347.
26 27 28	495	Dickerson-Lange, S. E., E. R. Howe, K. Patrick, R. Gersonde, and J. D. Lundquist. 2023. Forest gap
29 30	496	effects on snow storage in the transitional climate of the Eastern Cascade Range, Washington,
31 32	497	United States. Frontiers in Water 5:1115264. https://doi.org/10.3389/frwa.2023.1115264
33 34 35	498	Dickerson-Lange, S. E., J. A. Vano, R. Gersonde, and J. D. Lundquist. 2021. Ranking forest effects on
36 37	499	snow storage: A decision tool for forest management. Water Resources Research
38 39 40	500	57(10):e2020WR027926. https://doi.org/10.1029/2020WR027926
40 41 42	501	Dunn, C. J., C. D. O'Connor, J. Abrams, M. P. Thompson, D. E. Calkin, J. D. Johnston, R. Stratton,
43 44	502	and J. Gilbertson-Day. 2020. Wildfire risk science facilitates adaptation of fire-prone social-
45 46 47	503	ecological systems to the new fire reality. Environmental Research Letters 15:025001.
48 49	504	Ebel, B. A., and J. A. Moody. 2013. Rethinking infiltration in wildfire-affected soils. Hydrological
50 51 52	505	Processes 27(10):1510–1514. <u>https://doi.org/10.1002/hyp.9696</u>
52 53 54	506	Eidenshink, J., B. Schwind, K. Brewer, Z. Zhu, B. Quayle, and S. Howard. 2007. A project for
55 56 57	507	monitoring trends in burn severity. Fire Ecology 3: 3–21.
57 58 59		22

Page 23 of 43

1 2		
3 4	508	https://doi.org/10.4996/fireecology.0301003.
5 6 7	509	Falke, J.A., Flitcroft, R.L., Dunham, J.B., McNyset, K.M., Hessburg, P.F. and Reeves, G.H., 2015.
7 8 9	510	Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.
10 11	511	Canadian Journal of Fisheries and Aquatic Sciences, 72(2), pp.304-318.
12 13 14	512	https://cdnsciencepub.com/doi/full/10.1139/cjfas-2014-0098.
15 16	513	Flitcroft, R.L., Falke, J.A., Reeves, G.H., Hessburg, P.F., McNyset, K.M. and Benda, L.E., 2016.
17 18	514	Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin,
19 20 21	515	WA, USA. Forest Ecology and Management, 359, pp.126-140.
22 23	516	https://www.sciencedirect.com/science/article/pii/S0378112715005447.
24 25 26	517	Fullerton, A. H., N. Sun, M. J. Baerwalde, B. L. Hawkins, and H. Yan. 2022. Mechanistic simulations
26 27 28	518	suggest riparian restoration can partly counteract climate impacts to juvenile salmon. JAWRA
29 30	519	Journal of the American Water Resources Association 58(4):525–546. https://doi.org/10.1111/1752-
31 32 22	520	<u>1688.13011</u>
33 34 35	521	Furniss, T. J., P. F. Hessburg, N. A. Povak, R. B. Salter, and M. S. Wigmosta. 2022. Predicting future
36 37	522	patterns, processes, and their interactions: Benchmark calibration and validation procedures for
38 39 40	523	forest landscape models. Ecological Modelling 473:110099.
41 42	524	https://doi.org/10.1016/j.ecolmodel.2022.110099
43 44	525	Furniss, T. J., N. A. Povak, P. F. Hessburg, R. B. Salter, Z. Duan, and M. Wigmosta. 2023. Informing
45 46 47	526	climate adaptation strategies using ecological simulation models and spatial decision support tools.
48 49	527	Frontiers in Forests and Global Change 6:1269081. https://doi.org/10.3389/ffgc.2023.1269081
50 51	528	Furniss, T. J., N. Povak, P. F. Hessburg, R. B. Salter, Z. Duan, and M. Wigmosta. 2024. Wildfire
52 53 54	529	management decisions outweigh mechanical treatment as the keystone to forest landscape
55 56	530	adaptation. Fire Ecology 20(1):105. https://doi.org/10.1186/s42408-024-00339-y
57 58		
59 60		23

2 3 4	531	Germain, S. J., and J. A. Lutz. 2020. Climate extremes may be more important than climate means
5 6	532	when predicting species range shifts. Climatic Change 163:579–598.
7 8 0	533	https://doi.org/10.1007/s10584-020-02868-2
9 10 11	534	Gustafson, E.J., Shifley, S.R., Mladenoff, D.J., Nimerfro, K.K. and He, H.S., 2000. Spatial simulation
12 13	535	of forest succession and timber harvesting using LANDIS. Canadian Journal of Forest Research,
14 15 16	536	30(1), pp.32-43. https://cdnsciencepub.com/doi/abs/10.1139/x99-188.
17 18	537	Hagmann, R.K., Hessburg, P.F., Prichard, S.J., Povak, N.A., Brown, P.M., Fulé, P.Z., Keane, R.E.,
19 20 21	538	Knapp, E.E., Lydersen, J.M., Metlen, K.L. and Reilly, M.J., 2021. Evidence for widespread changes
21 22 23	539	in the structure, composition, and fire regimes of western North American forests. Ecological
24 25	540	Applications, 31(8), p.e02431.
26 27 28	541	https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.2431.
20 29 30	542	Harr, R.D. and Fredriksen, R.L., 1988. Water quality after logging small watersheds within the Bull
31 32	543	Run watershed, Oregon. Journal of the American Water Resources Association, 24(5), pp.1103-
33 34 35	544	1111. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.1988.tb03027.x.
36 37	545	Hessburg, P.F., Smith, B.G., Salter, R.B., Ottmar, R.D. and Alvarado, E., 2000. Recent changes
38 39	546	(1930s-1990s) in spatial patterns of interior northwest forests, USA. Forest Ecology and
40 41 42	547	Management, 136(1-3), pp.53-83.
43 44	548	https://www.sciencedirect.com/science/article/pii/S0378112799002637.
45 46 47	549	Hessburg, P.F., and Agee, J.K. 2003. An environmental narrative of inland northwest United States
47 48 49	550	forests, 1800-2000. Forest Ecology and Management 178, no. 1-2 (2003): 23-59.
50 51	551	https://www.sciencedirect.com/science/article/pii/S0378112703000525
52 53 54	552	Hessburg, P. F., J. K. Agee, and J. F. Franklin. 2005. Dry forests and wildland fires of the inland
54 55 56 57	553	Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras. Forest
58 59 60		24

2		
3 ⊿	554	Ecology and Management 211:117–139. https://doi.org/10.1016/j.foreco.2005.02.016
5		
6 7	555	Hessburg, P.F., Salter, R.B. and James, K.M., 2007. Re-examining fire severity relations in pre-
8 9	556	management era mixed conifer forests: inferences from landscape patterns of forest structure.
10 11	557	Landscape Ecology, 22, pp.5-24. https://link.springer.com/article/10.1007/s10980-007-9098-2
12 13 14	558	Hessburg, P.F., Churchill, D.J., Larson, A.J., Haugo, R.D., Miller, C., Spies, T.A., North, M.P., Povak,
15 16	559	N.A., Belote, R.T., Singleton, P.H. and Gaines, W.L. 2015. Restoring fire-prone Inland Pacific
17 18	560	landscapes: seven core principles. Landscape Ecology, 30, pp.1805-1835.
19 20 21	561	https://link.springer.com/article/10.1007/s10980-015-0218-0.
22 23	562	Hessburg, P.F., Spies, T.A., Perry, D.A., Skinner, C.N., Taylor, A.H., Brown, P.M., Stephens, S.L.,
24 25 26	563	Larson, A.J., Churchill, D.J., Povak, N.A. and Singleton, P.H., 2016. Tamm Review: Management
20 27 28	564	of mixed-severity fire regime forests in Oregon, Washington, and Northern California. Forest
29 30	565	Ecology and Management, 366, pp.221-250.
31 32	566	https://www.sciencedirect.com/science/article/pii/S0378112716000438.
33 34 35	567	Hessburg, P.F., Miller, C.L., Parks, S.A., Povak, N.A., Taylor, A.H., Higuera, P.E., Prichard, S.J.,
36 37	568	North, M.P., Collins, B.M., Hurteau, M.D. and Larson, A.J., 2019. Climate, environment, and
38 39	569	disturbance history govern resilience of western North American forests. Frontiers in Ecology and
40 41 42	570	Evolution, 7, p.239. https://doi.org/10.3389/fevo.2019.00239
43 44	571	Hessburg, P.F., Prichard, S.J., Hagmann, R.K., Povak, N.A. and Lake, F.K., 2021. Wildfire and climate
45 46	572	change adaptation of western North American forests: a case for intentional management.
47 48 49	573	Ecological applications, 31(8), p.e02432.
50 51	574	https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.2432.
52 53	575	Jones, J. A., I. F. Creed, K. L. Hatcher, R. J. Warren, M. B. Adams, M. H. Benson, E. Boose, W. A.
54 55 56	576	Brown, J. L. Campbell, A. Covich, D. W. Clow, C. N. Dahm, K. Elder, C. R. Ford, N. B. Grimm,
57		
58		

577	D. L. Henshaw, K. L. Larson, E. S. Miles, K. M. Miles, S. D. Sebestyen, A. T. Spargo, A. B. Stone,
578	J. M. Vose, and M. W. Williams. 2012. Ecosystem Processes and Human Influences Regulate
579	Streamflow Response to Climate Change at Long-Term Ecological Research Sites. BioScience
580	62(4):390–404. https://doi.org/10.1525/bio.2012.62.4.10
581	Jones, J. A., and D. A. Post. 2004. Seasonal and successional streamflow response to forest cutting and
582	regrowth in the northwest and eastern United States. Water Resources Research 40(5).
583	https://doi.org/10.1029/2003WR002952
584	Justice, C., S. M. White, D. A. McCullough, D. S. Graves, and M. R. Blanchard. 2017. Can stream and
585	riparian restoration offset climate change impacts to salmon populations? Journal of Environmental
586	Management 188:212–227. https://doi.org/10.1016/j.jenvman.2016.12.005
587	Kareiva, P., M. Marvier, and M. McClure. 2000. Recovery and Management Options for
588	Spring/Summer Chinook Salmon in the Columbia River Basin. Science 290(5493):977–979.
589	https://doi.org/10.1126/science.290.5493.977
590	Larson, A. J., and D. Churchill. 2012. Tree spatial patterns in fire-frequent forests of western North
591	America, including mechanisms of pattern formation and implications for designing fuel reduction
592	and restoration treatments. Forest Ecology and Management 267:74-92.
593	https://doi.org/10.1016/j.foreco.2011.11.038
594	Larson, A.J., Jeronimo, S.M., Hessburg, P.F., Lutz, J.A., Povak, N.A., Cansler, C.A., Kane, V.R. and
595	Churchill, D.J., 2022. Tamm Review: Ecological principles to guide post-fire forest landscape
596	management in the Inland Pacific and Northern Rocky Mountain regions. Forest Ecology and
597	Management, 504, p.119680.
598	https://www.sciencedirect.com/science/article/pii/S0378112721007702.
599	Livneh B., T.J. Bohn, D.S. Pierce, F. Munoz-Ariola, B. Nijssen, R. Vose, D. Cayan, and L.D. Brekke.

2 3 4	600	2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern
5 6	601	Canada 1950-2013, Nature Scientific Data, 5:150042,
7 8 9	602	https://www.nature.com/articles/sdata201542.
10 11	603	Loiselle, D., X. Du, D. S. Alessi, K. D. Bladon, and M. Faramarzi. 2020. Projecting impacts of wildfire
12 13	604	and climate change on streamflow, sediment, and organic carbon yields in a forested watershed.
14 15 16	605	Journal of Hydrology 590:125403. https://doi.org/10.1016/j.jhydrol.2020.125403
17 18	606	Lundquist, J.D., Dickerson-Lange, S.E., Lutz, J.A. and Cristea, N.C. 2013. Lower forest density
19 20 21	607	enhances snow retention in regions with warmer winters: A global framework developed from
22 23	608	plot-scale observations and modeling. Water Resources Research, 49(10), pp.6356-6370.
24 25 26	609	https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20504.
20 27 28	610	Maxwell, J., and S. B. St Clair. 2019. Snowpack properties vary in response to burn severity gradients
29 30	611	in montane forests. Environmental Research Letters 14(12):124094. https://doi.org/10.1088/1748-
31 32 33	612	<u>9326/ab5de8</u>
34 35	613	McCabe, G. J., and D. M. Wolock. 2009. Recent Declines in Western U.S. Snowpack in the Context of
36 37 38	614	Twentieth-Century Climate Variability. Earth Interactions 13(12):1–15.
39 40	615	https://doi.org/10.1175/2009EI283.1
41 42	616	McDowell, N. G., C. D. Allen, K. Anderson-Teixeira, B. H. Aukema, B. Bond-Lamberty, L. Chini, J.
43 44 45	617	S. Clark, M. Dietze, C. Grossiord, A. Hanbury-Brown, G. C. Hurtt, R. B. Jackson, D. J. Johnson, L.
46 47	618	Kueppers, J. W. Lichstein, K. Ogle, B. Poulter, T. A. M. Pugh, R. Seidl, M. G. Turner, M. Uriarte,
48 49 50	619	A. P. Walker, and C. Xu. 2020. Pervasive shifts in forest dynamics in a changing world. Science
50 51 52	620	368(6494):eaaz9463. https://doi.org/10.1126/science.aaz9463
53 54	621	Mote, P.W., Parson, E.A., Hamlet, A.F., Keeton, W.S., Lettenmaier, D., Mantua, N., Miles, E.L.,
55 56 57	622	Peterson, D.W., Peterson, D.L., Slaughter, R. and Snover, A.K., 2003. Preparing for climatic
58 59 60		27

2	
3	
1	
5	
6	
7	
8	
õ	
10	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
∠ I 22	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
25	
20	
50	
37	
38	
39	
40	
41	
12	
12	
43 44	
44	
45	
46	
47	
48	
<u>1</u> 0	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

623	change: the water, salmon, and forests of the Pacific Northwest. Climatic change, 61, pp.45-88.
624	https://link.springer.com/article/10.1023/A:1026302914358.
625	Mote, P. W., S. Li, D. P. Lettenmaier, M. Xiao, and R. Engel. 2018. Dramatic declines in snowpack in
626	the western US. npj Climate and Atmospheric Science 1(1):2. https://doi.org/10.1038/s41612-018-
627	0012-1
628	Naik, P. K., and D. A. Jay. 2011. Human and climate impacts on Columbia River hydrology and
629	salmonids. River Research and Applications 27(10):1270–1276. https://doi.org/10.1002/rra.1422
630	Nippgen, F., B. L. McGlynn, L. A. Marshall, and R. E. Emanuel. 2011. Landscape structure and
631	climate influences on hydrologic response. Water Resources Research 47(12).
632	https://doi.org/10.1029/2011WR011161
633	North, M., B. M. Collins, and S. Stephens. 2012. Using fire to increase the scale, benefits, and future
634	maintenance of fuels treatments. Journal of Forestry 110(7):392-401. https://doi.org/10.5849/jof.12-
635	021
636	North, M. P., S. L. Stephens, B. M. Collins, J. K. Agee, G. Aplet, J. F. Franklin, and P. Z. Fulé. 2015.
637	Reform forest fire management. Science 349(6254):1280-1281.
638	https://doi.org/10.1126/science.aab2356
639	North, M. P., R. A. York, B. M. Collins, M. D. Hurteau, G. M. Jones, E. E. Knapp, L. Kobziar, H.
640	McCann, M. D. Meyer, S. L. Stephens, R. E. Tompkins, and C. L. Tubbesing. 2021.
641	Pyrosilviculture needed for landscape resilience of dry western United States forests. Journal of
642	Forestry 119(5):520-544. https://doi.org/10.1093/jofore/fvab026
643	North, M.P., Bisbing, S.M., Hankins, D.L., Hessburg, P.F., Hurteau, M.D., Kobziar, L.N., Meyer,
644	M.D., Rhea, A.E., Stephens, S.L. and Stevens-Rumann, C.S., 2024. Strategic fire zones are essential
645	to wildfire risk reduction in the Western United States. Fire Ecology, 20(1), p.50.

to wildfire risk reduction in the Western United States. Fire Ecology, 20(1), p.50.

V

59

1 2		
3 4	646	https://link.springer.com/article/10.1186/s42408-024-00282-y.
5 6 7	647	Parks, S. A., C. H. Guiterman, E. Q. Margolis, M. Lonergan, E. Whitman, J. T. Abatzoglou, D. A.
9 10 11 12 13 14	648	Falk, J. D. Johnston, L. D. Daniels, C. W. Lafon, R. A. Loehman, K. F. Kipfmueller, C. E. Naficy,
	649	MA. Parisien, J. Portier, M. C. Stambaugh, A. P. Williams, A. P. Wion, and L. L. Yocom. 2025. A
	650	fire deficit persists across diverse North American forests despite recent increases in area burned.
15 16	651	Nature Communications 16(1):1493. https://doi.org/10.1038/s41467-025-56333-8
17 18	652	Parks, S. A., L. M. Holsinger, C. Miller, and C. R. Nelson. 2015. Wildland fire as a self-regulating
19 20 21	653	mechanism: the role of previous burns and weather in limiting fire progression. Ecological
22 23	654	Applications 25(6):1478–1492. https://doi.org/10.1890/14-1430.1
24 25 26	655	Perry, D.A., Hessburg, P.F., Skinner, C.N., Spies, T.A., Stephens, S.L., Taylor, A.H., Franklin, J.F.,
20 27 28	656	McComb, B. and Riegel, G., 2011. The ecology of mixed severity fire regimes in Washington,
29 30 31 32 33 34 35 36 37 38 39	657	Oregon, and Northern California. Forest Ecology and Management, 262(5), pp.703-717.
	658	https://www.sciencedirect.com/science/article/pii/S0378112711002672.
	659	Povak, N.A., Furniss, T.J., Hessburg, P.F., Salter, R.B., Wigmosta, M., Duan, Z. and LeFevre, M.,
	660	2022. Evaluating basin-scale forest adaptation scenarios: wildfire, streamflow, biomass, and
	661	economic recovery synergies and trade-offs. Frontiers in Forests and Global Change, 5, p.805179.
41 42	662	https://doi.org/10.3389/ffgc.2022.805179
43 44	663	Povak, N.A., Hessburg, P.F., Salter, R.B., Gray, R.W. and Prichard, S.J., 2023. System-level feedbacks
45 46 47	664	of active fire regimes in large landscapes. Fire Ecology, 19(1), p.45.
48 49	665	https://link.springer.com/article/10.1186/s42408-023-00197-0.
50 51 52	666	Povak, N.A. and Manley, P.N., 2024. Evaluating climate change impacts on ecosystem resources
52 53 54	667	through the lens of climate analogs. Frontiers in Forests and Global Change, 6, p.1286980.
55 56	668	https://doi.org/10.3389/ffgc.2023.1286980
57 58		

		2
Povak N A	669	3
	000	4
adaptati	670	5
1		0 7
https://d	671	8
		9
Povak N /	672	10
1 Ovak, 19. 1	072	11
Grav 20	673	12
Giuy. 20	075	13 14
Ecology	674	15
Lectoby	071	16
P Core Tee	675	17
K COIC I Ca	075	18
Statistic	676	19 20
Statistica	070	20
D 1 1	(77	22
Reinhardt,	6 / /	23
Con To	(70	24
Gen. Te	6/8	25
Dealers	670	26
ROCKY N	0/9	27
Granfall	690	29
Glemen	080	30
forasta	691	31
iorests o	081	32
Doto Ar	600	33
Data Al	062	34
D 1 1	(0)	36
Reinnardt,	683	37
	604	38
wiidiand	684	39
and Mar	605	40 1
	083	42
a 1 b a	60.6	43
Saksa, P. C	686	44
	(0 7	45
treatmer	687	46
12(2) 2	(00	47 48
13(3):e2	688	49
		50
Saksa, P. C	689	51
		52
on the w	690	53
		54 55
53(7):53	691	56
\mathbf{V}		57
		58
		59
		00

Povak, N. A., P. N. Manley, and K. N. Wilson. 2024. Quantitative methods for integrating climate adaptation strategies into spatial decision support models. Frontiers in Forests and Global Change 7. https://doi.org/10.3389/ffgc.2024.1286937

Povak, N. A., S. J. Prichard, P. F. Hessburg, V. Griffey, R. B. Salter, Furniss, T. J., G. Cova, R. W.

- Gray. 2025. Evidence for strong bottom-up controls on fire severity during extreme events. Fire
 Ecology, 21:27. <u>https://doi.org/10.1186/s42408-025-00368-1;</u>
- R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for
 Statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>
- 677 Reinhardt, E, Crookston, N.L. 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator.
- 678 Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service,
- 679 Rocky Mountain Research Station. 209 p. https://doi.org/10.2737/RMRS-GTR-116.Riley, Karin L.;
- 680 Grenfell, Isaac C.; Finney, Mark A.; Shaw, John D. 2021. TreeMap 2016: A tree-level model of the
- 681 forests of the conterminous United States circa 2016. Fort Collins, CO: Forest Service Research
- 682 Data Archive. <u>https://doi.org/10.2737/RDS-2021-0074</u>.
- Reinhardt, E. D., R. E. Keane, D. E. Calkin, and J. D. Cohen. 2008. Objectives and considerations for
 wildland fuel treatment in forested ecosystems of the interior western United States. Forest Ecology
 and Management 256:1997–2006. https://doi.org/10.1016/j.foreco.2008.09.016.
 - Saksa, P. C., R. C. Bales, C. L. Tague, J. J. Battles, B. W. Tobin, and M. h. Conklin. 2020. Fuels
 treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests. Ecohydrology
 13(3):e2151. https://doi.org/10.1002/eco.2151
 - Saksa, P. C., M. H. Conklin, J. J. Battles, C. L. Tague, and R. C. Bales. 2017. Forest thinning impacts
 on the water balance of Sierra Nevada mixed-conifer headwater basins. Water Resources Research
 53(7):5364–5381. https://doi.org/10.1002/2016WR019240

Page 31 of 43

1

2		
3 4	692	Scheller, R. M., J. B. Domingo, B. R. Sturtevant, J. S. Williams, A. Rudy, E. J. Gustafson, and D. J.
5 6	693	Mladenoff. 2007. Design, development, and application of LANDIS-II, a spatial landscape
7 8	694	simulation model with flexible temporal and spatial resolution. Ecological Modelling 201(3-
9 10 11	695	4):409–419. https://doi.org/10.1016/j.ecolmodel.2006.10.009
12 13	696	Scheller, R. M., D. Hua, P. V. Bolstad, R. A. Birdsey, and D. J. Mladenoff. 2011. The effects of forest
14 15 16	697	harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic
17 18	698	Forests. Ecological Modelling 222(1):144-153. https://doi.org/10.1016/j.ecolmodel.2010.09.009.
19 20 21	699	Scheller, R., A. Kretchun, T. J. Hawbaker, and P. D. Henne. 2019. A landscape model of variable
21 22 23	700	social-ecological fire regimes. Ecological Modelling 401:85–93.
24 25	701	https://doi.org/10.1016/j.ecolmodel.2019.03.022
26 27 28	702	Schoennagel, T., J. K. Balch, H. Brenkert-Smith, P. E. Dennison, B. J. Harvey, M. A. Krawchuk, N.
29 30	703	Mietkiewicz, P. Morgan, M. A. Moritz, R. Rasker, M. G. Turner, and C. Whitlock. 2017. Adapt to
31 32	704	more wildfire in western North American forests as climate changes. Proceedings of the National
33 34 35	705	Academy of Sciences 114(18):4582-4590. https://doi.org/10.1073/pnas.1617464114
36 37	706	Seaber, Paul R., F. Paul Kapanos, and George L. Knapp (1987). Hydrologic Unit Maps. United States
38 39 40	707	Geological Survey Water-Supply Paper 2294: i–iii, 1–63.
40 41 42	708	Seibert, J., J. J. McDonnell, and R. D. Woodsmith. 2010. Effects of wildfire on catchment runoff
43 44	709	response: a modelling approach to detect changes in snow-dominated forested catchments.
45 46 47	710	Hydrology Research 41(5):378–390. https://doi.org/10.2166/nh.2010.036
48 49	711	Shive, K.L., Coppoletta, M., Wayman, R.B., Paulson, A.K., Wilson, K.N., Abatzaglou, J.T., Saberi,
50 51	712	S.J., Estes, B. and Safford, H.D., 2024. Thinning with follow-up burning treatments have increased
52 53 54	713	effectiveness at reducing severity in California's largest wildfire. Forest Ecology and Management,
55 56	714	572, p.122171. https://www.sciencedirect.com/science/article/pii/S0378112724004833.
57 58		
59		31

2
3
4
5
ر م
6
7
8
9
10
10
11
12
13
14
15
16
10
17
18
19
20
21
22
22
23
24
25
26
27
27
20
29
30
31
32
33
24
54
35
36
37
38
30
10
40
41
42
43
44
45
40
40
47
48
49
50
51
51
52
53
54
55
56
50
5/
58
59

1

715	Short, Karen C. 2022.	Spatial wildfire occurre	nce data for the United State	s, 1992-2020
	,	1		,

716 [FPA_FOD_20221014]. 6th Edition. Fort Collins, CO: Forest Service Research Data Archive.

717 <u>https://doi.org/10.2737/RDS-2013-0009.6</u>

718 Stephens, S. L., B. M. Collins, E. Biber, and P. Z. Fulé. 2016. U.S. federal fire and forest policy:

719 emphasizing resilience in dry forests. Ecosphere 7(11). <u>https://doi.org/10.1002/ecs2.1584</u>

- 720 Stephens, S. L., M. A. Battaglia, D. J. Churchill, B. M. Collins, M. Coppoletta, C. M. Hoffman, J. M.
- 721 Lydersen, M. P. North, R. A. Parsons, S. M. Ritter, and J. T. Stevens. 2020. Forest Restoration and
- Fuels Reduction: Convergent or Divergent? BioScience:biaa134.
- 723 https://doi.org/10.1093/biosci/biaa134
 - 524 Stevens, J. T., B. M. Collins, J. W. Long, M. P. North, S. J. Prichard, L. W. Tarnay, and A. M. White.
 - 2016. Evaluating potential trade-offs among fuel treatment strategies in mixed-conifer forests of the
 Sierra Nevada. Ecosphere 7(9):e01445. https://doi.org/10.1002/ecs2.1445
 - 727 Sun, N., M. Wigmosta, T. Zhou, J. Lundquist, S. Dickerson-Lange, and N. Cristea. 2018. Evaluating
 - the functionality and streamflow impacts of explicitly modelling forest–snow interactions and
- canopy gaps in a distributed hydrologic model. Hydrological Processes 32(13):2128–2140.
- 730 https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.13150.
 - 731 Sun, N., Yan, H., Wigmosta, M. S., Lundquist, J., Dickerson-Lange, S., and Zhou, T. 2022. Forest
 - 732 Canopy Density Effects on Snowpack across the Climate Gradients of the Western United States
 - 733 Mountain Ranges. Water Resources Research. <u>https://doi.org/10.1029/2020WR029194</u>.
- Taylor, A. H., L. B. Harris, and C. N. Skinner. 2022. Severity patterns of the 2021 Dixie Fire exemplify
 the need to increase low-severity fire treatments in California's forests. Environmental Research
 Letters 17:071002. https://iopscience.iop.org/article/10.1088/1748-9326/ac7735.
 - Thompson, M.P., O'Connor, C.D., Gannon, B.M., Caggiano, M.D., Dunn, C.J., Schultz, C.A., Calkin,

1 2	
2 3 4	73
5 6	73
7 8	74
9 10 11	74
12 13	74
14 15	74
16 17	74
18 19	74
20 21 22	/4
22 23 24	74
25 26	74
27 28	74
29 30	74
31 32 33	75
34 35	75
36 37	75
38 39	75
40 41 42	75
43 44	75
45 46	
47 48	75
49 50 51	75
52 53	75
54 55	75
56 57	
58 59	

738	D.E., Pietruszka, B., Greiner, S.M., Stratton, R. and Morisette, J.T., 2022. Potential operational
739	delineations: new horizons for proactive, risk-informed strategic land and fire management. Fire
740	Ecology, 18(1), p.17. https://link.springer.com/article/10.1186/s42408-022-00139-2.
741	United States Congress. 1964. The Wilderness Act. https://www.congress.gov/bill/88th-
742	congress/senate-bill/4/
743	USDA Forest Service. 2022. Confronting the wildfire crisis: A strategy for protecting communities and
744	improving resilience in America's forests. No. FS-1187a, USDA Forest Service.
745	https://www.fs.usda.gov/sites/default/files/Confronting-Wildfire-Crisis.pdf.
746	Washington Department of Natural Resources. 2022. Wildfire Season 2021 - Work of Wildfire
747	Assessment. Washington State Department of Natural Resources., Olympia, WA.
748	https://deptofnaturalresources.box.com/s/gjnmcm0py2f3n447ba18wz5zkyjuwdgq
749	Washington Department of Natural Resources. 2024. 20-year forest health strategic plan monitoring
750	report 2024. Forest Resilience Division, Washington State Department of Natural Resources.,
751	Olympia, WA.
752	Wenger, S.J., Isaak, D.J., Luce, C.H., Neville, H.M., Fausch, K.D., Dunham, J.B., Dauwalter, D.C.,
753	Young, M.K., Elsner, M.M., Rieman, B.E. and Hamlet, A.F., 2011. Flow regime, temperature, and
754	biotic interactions drive differential declines of trout species under climate change. Proceedings of
755	the National Academy of Sciences, 108(34), pp.14175-14180.
756	Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier. 1994. A distributed hydrology-vegetation model
757	for complex terrain. Water Resources Research 30(6):1665–1679.
758	https://doi.org/10.1029/94WR00436
759	Young, J. D., A. E. Thode, CH. Huang, A. A. Ager, and P. Z. Fulé. 2019. Strategic application of

2 3 4	760	wildland fire suppression in the southwestern United	States. Journal of Environmental Management
5 6 7	761	245:504–518.	
8 9 10			
11 12 13			
14 15 16			
17 18 19			
20 21 22			
23 24 25			
26 27 28			
29 30 31			Y
32 33 34			
35 36 37			
39 40 41			
42 43			
45 46 47			
48 49 50			
51 52 53			
54 55 56			
57 58 59	X	21	
60			

2 3 4	762	TABLES					
5 6 7	763	TABLE 1. Management zones and target treatment rates. The wildlands zone was defined as					
8 9	764	wilderness and roadless areas that are managed with minimal human intervention and					
10 11 12	765	therefore did not receive any mechanical treatments. Industrial managed forests were located					
13 14	766	on private lands and represented the most intensive management category. Thinning					
15 16	767	prescriptions on public lands were applied differently based on real-world management					
17 18 19	768	objectives in dry versus moist forests.					
20 21			Ar	ea	Area treated	d/ year	
22		Managamant gana	Пе	0/ of total	% Uo	of mgt	
23		Winder de	<u> </u>	<u>% 01 total</u>		zone	
24		Wildlands	243,556	54%		0%	
25		Industrial forests	19,866	4%	667	3%	
26		Dry managed forests	83,491	18%	3,361	4%	
27		Moist managed forests	59,269	13%	524	1%	
28		Other (urban/rural, water, rock)	44,788	10%	0	0%	
29		Total	450,970	100%	4,552	1%	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58							
59		Y		35			
60							

FIGURE 1. Vicinity map and study area of the Wenatchee and Entiat River subbasins in central
Washington State. The study landscape is wildlands (54%), with the remainder comprising a mix of actively managed forests, industrial timber lands, and urban/rural development (left).
Vegetation in the study domain is heterogeneous, spanning from grass and shrub-dominated vegetation types in the lowlands to subalpine forests and alpine vegetation at the upper elevations (right). The thick black lines in the nested panels denote the boundaries of the Wenatchee and Entiat sub-basins (HUC8-level), while the thin grey lines indicate HUC10-level watersheds. The red perimeter represents a 5-km buffer that was included in the simulations to account for edge

effects.

780

781

782

783

784

785

786

FIGURE 2. Simulated future stream flow and snowpack dynamics (10 year rolling mean) under an RCP 8.5 emissions scenario for the Wenatchee and Entiat subbasins. Values represent landscapelevel averages across the study domain. Units for peak SWE and mean annual flow are in meters, units for the right two panels are day of year. The RCP8.5 scenario without treatments (grey line) represents a no fire "grow-out" scenario; one with neither treatment nor wildfire. Unsmoothed trend lines may be found in Fig. S6. Lines represent simulated hydrologic dynamics under different management scenarios. Differences between scenarios were much smaller than interannual fluctuations due to inter- and intra-annual climatic variability. Over the 100-yr simulation period, there was an overall decline in peak snow water equivalent (SWE), a two-788 week shift towards earlier melt-out date, and an increase in mean annual flows.

FIGURE 3. Differences in hydrology metrics between scenarios, where the Wildfire Only (i.e., the RCP 8.5 no treatment) scenario was held constant (horizontal line at 0). Each panel corresponds to the same metrics reported in Fig. 2, but values are differenced with the Wildfire Only scenario. Values above zero indicate better performance than no treatment, while values less than zero indicate poorer performance relative to the Wildfire Only scenario. All scenarios involving mechanical treatment or Rx fire performed better than the Wildfire Only scenario for the first half of the simulation, but relative rankings changed after 2060 as area burned under Wildfire Only increased sharply, leading to greater peak SWE and mean flows in the Wildfire Only scenario. By the end of the simulation, the two scenarios with the greatest area burned, Wildfire Only and *Wildfire* + *Harvest*, had the best outcomes across hydrology metrics.

FIGURE 4. Efficacy of harvest treatments (top row) and wildfire (middle row) in terms of mean annual stream flow (m/unit area/year) for all HUC12 subwatersheds. Harvest-induced changes in flow are also shown as a function of watershed area and elevation belt (bottom row). Mean flows represent differences in flow between scenarios at the simulation midpoint (year 2070). Delta flow values for the harvest treatments (top row) represent differences between Wildfire Only and Wildfire + Harvest scenarios, while delta values for area burned represent differences between the Grow Out and Wildfire Only scenarios. Solid black lines indicate significant relationships, gray shading represents the 95% confidence interval.

FIGURE 5. Efficacy of harvest treatments by vegetation type. Treatment efficacy represents the potential for mechanical treatments to increase snowpack retention and water yields, calculated as the difference between the Wildfire Only scenario and the Wildfire + Harvest scenario, averaged among all hydrology metrics. As scenario differences also include indirect effects of altered wildfire regimes, treatment efficacy can be non-zero even when treated area was negligible. Asterisks indicate degree of significant difference between the bars (****: $p \le 0.001$; ns: not significant). Fill colors represent proportion area treated (area treated / total area per vegetation class), while border represents total area treated within each vegetation class. Warmer colors indicating high proportion (or total area) and greens indicating low proportion (or total area). Treatment efficacy was highest in dry and moist mixed conifer vegetation types, both of which had both high proportion area treated and high total area treated.

FIGURE 6. Treatment efficacy by land ownership. Treatment efficacy represents the potential for restorative forest treatments to increase snowpack retention and water yields, calculated as the difference between the Wildfire Only scenario and the Wildfire + Harvest scenario. As scenario differences also include indirect effects of altered wildfire regimes, treatment efficacy can be non-zero even when treated area was negligible. Asterisks indicate degree of significant difference between the bars (****: $p \le 0.001$; ns: not significant). Fill colors represent proportion area treated (area treated / total area per vegetation class), while border represents total area treated within each vegetation class. Warmer colors indicating high proportion (or total area) and greens indicating low proportion (or total area). Industrial forests (right) had a high proportion area treated despite low total area, while actively managed federal lands (left) had a high proportion area treated and large total area.

FIGURE 7. Seasonal hydrographs showing monthly mean flows by decade under the climate change RCP8.5 emissions scenario and Wildfire Only management scenario. Lines represent flows in each of the 91 subwatersheds (HUC12-level) in the study domain, colored by mean watershed elevation. Currently (2020-2030), peak flows occur in the spring for all subwatersheds, indicating a snow-dominated hydrologic regime. By the end of the simulation period, however, peak flows in low elevation watersheds (less than approximately ~1,200 m elevation) occur in the fall, indicating a transition to rain-dominated flow regimes.

FIGURE 8. Seasonal hydrographs showing monthly mean flows by decade under the RCP8.5 climate scenario for all management scenarios. Flows represent average flow per HUC12 for all subwatersheds within the Wenatchee and Entiat subbasins. Differences between HUCs are displayed in Figure 7. Scenario differences were minimal, but differences between all scenarios that included wildfire and the no disturbance scenario (labelled "Grow Out") were pronounced.