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Abstract 
Context Addressing ecosystem degradation in 
the Anthropocene will require ecological restora-
tion across large spatial extents. Identifying areas 
where natural regeneration will occur without direct 
resource investment will improve scalability of resto-
ration actions.
Objectives An ecoregion in need of large scale res-
toration is the Great Basin of the Western US, where 
increasingly large and frequent wildfires threaten 
ecosystem integrity and its foundational shrub spe-
cies. We develop a framework to forecast where post-
wildfire regeneration of sagebrush cover (Artemisia 

spp.) is likely to occur within the burnt areas across 
the region (> 900,000  km2).
Methods First, we parameterized population models 
using Landsat satellite-derived time series of sage-
brush cover. Second, we evaluated the out-of-sam-
ple performance by predicting natural regeneration 
in wildfires not used for model training. This model 
assessment reproduces a management-oriented sce-
nario: making restoration decisions shortly after wild-
fires with minimal local information. Third, we asked 
how accounting for increasingly fine-scale spatial het-
erogeneity could improve model forecasting accuracy.
Results Regional-level models revealed that sage-
brush post-fire recovery is slow, estimating > 80-year 
time horizon to reach an average cover at equilibrium 
of 16.6% (CI95% 9–25). Accounting for wildfire and 
within-wildfire spatial heterogeneity improved out-of-
sample forecasts, resulting in a mean absolute error 
of 3.5 ± 4.3% cover, compared to the regional model 
with an error of 7.2 ± 5.1% cover.
Conclusions We demonstrate that combining popu-
lation models and non-parametric spatial matching 
provides a flexible framework for forecasting plant 
population recovery. Models for population recovery 
applied to Landsat-derived time series will assist res-
toration decision-making, including identifying prior-
ity targets for restoration.

Keywords Ecological forecasting · Natural 
regeneration · Ecological restoration · Wildfire · Great 
Basin · Artemisia

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10980- 023- 01621-1.

A. Zaiats (*) · M. E. Cattau · T. T. Caughlin 
Boise State University, Boise, ID, USA
e-mail: andriizaiats@u.boisestate.edu

D. S. Pilliod 
U.S. Geological Survey, Forest and Rangeland Ecosystem 
Science Center, Boise, ID, USA

R. Liu 
University of Wyoming, Laramie, WY, USA

J. M. Requena-Mullor 
Department of Biology and Geology. Andalusian Center 
for the Assessment and Monitoring of Global Change 
(CAESCG), University of Almeria, C/ Sacramento s/n 
04120, Almeria, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-023-01621-1&domain=pdf
https://doi.org/10.1007/s10980-023-01621-1
https://doi.org/10.1007/s10980-023-01621-1


 Landsc Ecol

1 3
Vol:. (1234567890)

Introduction

Natural regeneration of native plant communities in 
disturbed landscapes can be an economical and eco-
logically attractive option for restoration (Shono et al. 
2007; Jones et  al. 2018; Strassburg et  al. 2019). As 
climate change induces increasingly large distur-
bances the need for economically feasible strategies, 
such as natural regeneration, will become even more 
acute (Holl and Aide 2011). Yet, adopting natural 
regeneration as a management tool is challenged by 
variable rates of ecological succession, particularly at 
large spatial extents (Zahawi et al. 2014; Brancalion 
et al. 2016; Caughlin et al. 2019). Developing quan-
titative models that can forecast spatial variability in 
natural regeneration is a long-standing and largely 
unrealized goal in restoration ecology (Brudvig and 
Catano  2021). Ecological forecasts of ecosystem 
recovery derived from quantitative models would 
support land management by identifying sites where 
natural regeneration is a feasible restoration strategy 
(Marescot et al. 2013; Chazdon and Guariguata 2016; 
Dietze et al. 2018; Strassburg et al. 2019; Crouzeilles 
et al. 2020). However, multiple barriers have impeded 
the development of forecasting models in restoration 
ecology. These barriers include multivariate patterns 
of environmental heterogeneity, the complexity of 
ecological process models, and the lack of species-
level time series data across large spatial extents.

One difficulty in developing forecasts for ecologi-
cal succession stems from the multivariate, non-lin-
ear, and interactive effects of biotic and abiotic factors 
across scales (Rollinson et  al. 2021). Such interac-
tions lead to changing relationships among environ-
mental and biological variables across space and time, 
thereby making ecological forecasts difficult (Zipkin 
et  al. 2021). Non-parametric methods can overcome 
difficulties associated with multivariate effects and 
often show superior performance in ecological pre-
dictions compared to regression-based models that 
quantify effect sizes for each environmental covariate 
directly (e.g., Barnard et al. 2019). Spatial matching 
is a non-parametric approach that provides a flexible 
way to predict an unknown ecological process based 
on the environmental similarity between geographi-
cally distant locations (Kirkman et  al. 2013; Adler 
et al. 2020). This method relies on a similarity score 
to find a physical, or construct a synthetic, reference 
site to a focal location where an ecological forecast 

is needed (Butsic et al. 2017; Ribas et al. 2021). Spa-
tial matching also allows for hierarchical combina-
tions that can account for environmental variation 
across multiple scales (Rollinson et  al. 2021). For 
example, Renne et al. (2021) used spatial matching to 
overcome computational challenges in a cross-scale 
analysis of individual plant performance as a func-
tion of ecosystem water balance. Spatial matching has 
also enabled causal inference on the effectiveness of 
policy interventions from observational data (Brandt 
et al. 2019; Fick et al. 2021; Simler-Williamson and 
Germino 2022). Interpretable spatial matches based 
on ecological similarity are likely to benefit model 
adoption by managers, including potential recogni-
tion of model strengths and shortcomings when con-
fronted with local knowledge and observations (Rad-
chuk et al. 2019a). Multi-scale, hierarchical matching 
is particularly relevant for heterogeneous landscapes 
where environmental variation crosses scales from 
regional gradients to locally varying site characteris-
tics (Diaz et al. 1998; Mertes et al. 2020).

In addition to multivariate environmental hetero-
geneity, the complexity of ecological processes com-
plicates the development of forecasting models. For 
example, relationships between population dynamics 
and abiotic drivers at the plot level can be challeng-
ing to transfer to other locations (Davies et al. 2011; 
Applestein et  al. 2021). Process-based models are 
expected to improve forecasting accuracy, relative to 
phenomenological regression-based models, by repre-
senting mechanistic relationships (Purves and Pacala 
2008; Dietze 2017; Hefley et al. 2017). Such process-
based models often include endogenous feedbacks of 
population change, such as density dependence, that 
lead to non-linear system dynamics (Hastings et  al. 
1993, 2018). Therefore, a fundamental challenge to 
confronting process models with real data is balanc-
ing the trade-off between complex, but more realis-
tic, and parsimonious, but potentially oversimplified 
models (Clark et al. 2020; Fer et al. 2021). Population 
models present a potential solution to this trade-off 
by simplifying ecological complexity while focus-
ing on the population dynamics of a single species 
(Tredennick et al. 2016). For example, the Gompertz 
model for unstructured populations (i.e., the per cap-
ita growth rate is the same for all individuals in the 
population, regardless of individual characteristics 
such as size, genotype, or health status) is a simple, 
regression-based framework that quantifies growth 
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rate and density dependence and is widely used to 
model time series of population data in fisheries and 
wildlife applications (Rossetto et  al. 2015; Barbraud 
et  al. 2018, p. 20; Johnson-Bice et  al. 2021). How-
ever, despite its potential utility for forecasting plant 
population recovery after disturbance, the Gompertz 
model has not been widely used in plant ecology (but 
see Damgaard et al. 2002; Tredennick et al. 2016).

Data limitation provides one explanation for the 
relative lack of models to forecast plant population 
recovery after large-scale disturbances. Whereas 
field-based monitoring of individual plants is the 
foundation of plant population ecology, these data are 
logistically difficult to collect over large spatial and 
temporal extents (Gurevitch et al. 2016). Trajectories 
of population-level changes provide an alternative to 
marking and monitoring individual plants. In some 
cases, unstructured population models informed by 
temporal changes in percent cover offer equivalent 
predictive power to structured population models that 
rely on individual-level data (Tredennick et al. 2017; 
Goodsell et  al. 2021). The utility of modeling time 
series of plant cover with unstructured population 
models, such as the Gompertz model, hints at using 
remote sensing as a data source for plant demogra-
phy. Remotely sensed data, such as the multi-decadal, 
globally extensive Landsat satellite imagery archive, 
can accurately map species and functional group 
cover over large areas (Homer et al. 2020; Larson and 
Tuor 2021). We propose that satellite imagery pro-
vides an unprecedented data source to model plant 
population recovery at broad spatial extents relevant 
for land management.

In this paper, we use Landsat satellite-derived 
cover trajectories to forecast population recovery 
of foundational shrub species (sagebrush, Artemi-
sia spp.) in the Western United States. Over the last 
century, altered wildfire regimes and other distur-
bance factors have reduced or altered intact sage-
brush steppe habitat to nearly half of its former extent 
(Pyke et al. 2015; Mahood and Balch 2019). Despite 
active restoration efforts aimed to counteract ecosys-
tem degradation (Pilliod et al. 2017; Copeland et al. 
2018), including over US $100 million spent annu-
ally, restoration of the sagebrush steppe remains a 
challenge (James et al. 2013; Knutson et al. 2014). A 
large proportion of the restoration and conservation 
efforts aim to assist post-fire recovery of sagebrush 
stands, which provide wildlife habitat and dominate 

large areas of the western US (Miller et  al. 2011; 
Davies et al. 2011; Chambers et al. 2017; Pilliod et al. 
2020). The geographical scope of historic degradation 
and the increasing impacts of altered wildfire regimes 
call for cost-efficient restoration strategies. Allocat-
ing restoration interventions in sagebrush steppe will 
benefit from spatial forecasts of natural regeneration 
to limit the geographical scope of potential interven-
tions (James et al. 2013; Copeland et al. 2021; Ducha-
rdt et al. 2021).

We used hierarchical spatial matching and regres-
sion-based unstructured population growth models to 
develop spatio-temporal forecasts of sagebrush cover 
in post-wildfire landscapes that had no documented 
restoration treatments. We applied our framework 
to a subset of wildfires that occurred between 1987 
and 2007 and evaluate the forecasting accuracy of our 
approach using out-of-sample validation. By leav-
ing out entire wildfire sites for model validation, we 
directly quantify how well our models can forecast 
the recovery (i.e., the trajectory of sagebrush cover 
post-wildfire) at wildfires where no data are available. 
Our validation approach corresponds to the manage-
ment need to make decisions with minimal site-level 
information on plant demography. We asked the fol-
lowing questions:

 (i) How accurately can a simple population growth 
model, i.e., the Gompertz model, forecast nat-
ural regeneration of post-wildfire sagebrush 
cover?

 (ii) How does spatial matching of wildfires com-
bined with the population model improve the 
forecasting accuracy of natural regeneration?

 (iii) Does accounting for within-wildfire heteroge-
neity improve the forecasting accuracy of natu-
ral regeneration?

Methods

The central data source in our study is the National 
Land Cover Database (NLCD, now rebranded as 
RCMAP; Rangeland Condition Monitoring Assess-
ment and Projection), which maps the annual cover 
of plant functional groups at 30-m spatial resolution 
across the Western US, including the Great Basin 
ecoregion (Rigge et al. 2019; Homer et al. 2020). The 
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NLCD database is derived from the Landsat satel-
lite archive, with back-propagated estimates of sage-
brush cover resulting in a time series from 1985 to 
2018 with cross-validated accuracy of RMSE at 3.4% 

cover and  R2 of 0.63. We focus on modeling the sage-
brush fractional component at the genus level (Arte-
misia spp.) as a trade-off between NLCD accuracy 
and demographic similarity within Artemisia spp. 
(Shultz 2009). The sagebrush fractional component 
is mostly representative of big sagebrush (Artemisia 
tridentata); but also includes several less common 
congeneric species with similar demographic traits 
(Shultz 2009; Rigge et  al. 2019). We selected loca-
tions that burnt only once since 1950 until present 
time, had at least 10 years of post-fire recovery, and 
had no documented restoration treatments after wild-
fire events (Fig. 1). We used a historic wildfire data-
set (Welty and Jeffries 2021) and the Land Treatment 
Digital Library (Pilliod et al. 2019) to select the sites 
that met these criteria. As none of our sites received 
restoration treatments (sensu Holl and Aide 2011), we 
consider all sites to be naturally regenerating, albeit 
at different rates. See the Zenodo repository refer-
enced in the Data Availability statement for docu-
mented geospatial processing steps. Our selection 
process resulted in N = 430 wildfire areas (polygons) 
burnt once between 1987 and 2007 without subse-
quent wildfires until the end of the NLCD time series 
(2018). Although some wildfire polygons in our data-
set represent a non-treated portion of a larger wildfire, 
we refer to our sample units as wildfires for the rest 

Fig. 1  The extent of the study area showing the Great Basin 
ecoregion over the US state boundaries (gray lines). Natu-
rally regenerating wildfire polygons are indicated by grey 
points, with the size of the points indicating the polygon area. 
Map lines delineate study areas and do not necessarily depict 
accepted national border lines

Fig. 2  An example of a wildfire polygon highlighted by 
the purple dashed line in Fig.  1 with color intensity indicat-
ing sagebrush cover before the wildfire event based on the 
National Land Cover Database (A). Clusters of pixels within 
the same wildfire (B–E) grouped by similarity in topography, 

soil organic carbon, and pre-disturbance sagebrush cover. 
Starting from a single cluster (B) where pixels are assumed 
identical, (C–E) show a progressively higher degree of pixel 
clustering, with the color indicating cluster identity
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of the manuscript. The area of wildfires ranged from 
41 to 2465 ha, resulting in a total of 1,269,744 wild-
fire pixels from the NLCD time series (Figs. 1 & 2). 
The length of the time series ranged between 11 and 
31 years since a wildfire event. 

Hierarchical spatial matching

The Great Basin ecoregion is characterized by a 
high degree of environmental variation at both local 
and regional extents (from less than 0.1 to > 900,000 
 km2), including elevation, soil, and climate patterns. 
We used spatial matching to forecast sagebrush cover 
trajectories for each wildfire by identifying envi-
ronmentally similar reference locations. We limited 
the number of possible covariates in spatial match-
ing to variables with demonstrated relationships to 
sagebrush population dynamics. Specifically, higher 
elevation and higher annual precipitation positively 
correlate with sagebrush regeneration, while tem-
perature extremes and heat load are associated with 
slower recovery and lower sagebrush density (Knut-
son et  al. 2014; Tredennick et  al. 2016; Requena‐
Mullor et al. 2019). Similarly, soil characteristics and 
its water holding capacity, particularly in early spring, 
can determine sagebrush seedling recruitment and 
juvenile survival (Shriver et al. 2019; O’Connor et al. 
2020). Based on these results, we extracted remotely 
sensed data products, including topographic (Farr 
et al. 2007; Theobald et al. 2015), climate (Daly et al. 
2015), soil (Chaney et al. 2019; NASA: http:// nsidc. 
org/ data/ smap), and pre-wildfire sagebrush (Homer 
et  al. 2020) to develop covariates for matching (see 
Appendix S1: Table S1 for the full list of covariates 
used in the spatial analysis).

The spatial matching procedure included two suc-
cessive and nested steps. First, at the wildfire level, 
the spatial matching included finding a reference 
wildfire, i.e., a biophysically similar site, from the 
entire dataset based on a suite of abiotic and biotic 
covariates (i.e., wildfire-to-wildfire matching, Appen-
dix S1: Table  S1). We used the shortest Mahalano-
bis distance metric to form each pair of ecologically 
similar wildfires. The Mahalanobis distance accounts 
for the covariance between the environmental factors 
and represents a distance measure in an orthogonal 
multivariate space where covariates are centered on 
their means and pairwise correlations between them 
are zero (McCune et  al. 2002). Second, to account 

for within-wildfire variation, i.e., within each wildfire 
polygon, we grouped ecologically similar pixels into 
clusters based on a set of abiotic and biotic covariates 
at the pixel level (Table S1). Based on the identified 
clusters within each wildfire, we matched two envi-
ronmentally similar clusters from the reference and 
focal wildfires using the shortest pairwise Mahalano-
bis distance between the means of cluster-level covar-
iates. To group environmentally and ecologically 
similar pixels into clusters, we scaled and centered 
pixel-level values and applied k-means algorithm with 
the number of clusters, M, ranging between 2 and 14. 
Our goal with k-means clustering was to quantify 
within-wildfire heterogeneity at progressively finer 
resolution. The maximum number of clusters, M = 14, 
was dictated by the ability of k-means algorithm 
to converge for each wildfire when grouping pixel-
level covariates under increasingly higher number 
of clusters. As a result, the average area of clusters 
decreased with the increasing M, i.e., the number of 
distinct spatial units within a wildfire. Given the aver-
age wildfire area at 265.7 ha, the average area of the 
spatial units under M = 3, 6, 14 clusters was at 88.5, 
44.3, and 17.7 ha., respectively.

Model fitting

The population process in our models hinges on the 
Gompertz growth model for single-species popula-
tion dynamics. The discrete-time Gompertz equation 
can be written as yt+1

yt
= exp(�)y�

t
 , where � and � are 

parameters for growth and density dependence, 
respectively, and yt is the population size at time t. 
The model has been widely applied to model popula-
tion time series in wildlife study systems with demon-
strated inferential and forecasting value (Zhang 1997; 
Lebreton and Gimenez 2013; Koons et  al. 2015). 
Population dynamics under the Gompertz model 
include exponential growth rates at low population 
densities that slow down as population size increases 
(Gamito 1998). While the model accounts for non-
linear growth, it can be parametrized in a regression-
based framework on the log–log scale (Eq. 1).

Our modeling work borrows from previous studies 
that used generalized linear models (GLMs) and the 
Gompertz model to predict population cover using 
NLCD (Tredennick et al. 2016). The NLCD data for 

http://nsidc.org/data/smap
http://nsidc.org/data/smap
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sagebrush cover is an integer-valued number format, 
which motivated several of our modeling decisions. 
First, we used a Poisson generalized linear model for 
count data to be consistent with the data generation 
process (Tredennick et al. 2016). Second, because the 
Gompertz model in a Poisson regression requires a 
natural  log-transformation of current cover in year t, 
we excluded pixels with zero values from the predic-
tor of Eq. 1, resulting in yt > 0, and left the response 
variable intact (yt+1 ≥ 0). The exclusion of zero-val-
ued observations is demographically justifiable for 
Eq. 1: a transition of the population cover in pixel p 
from zero in the current year t (yt,p = 0) to a positive 
value in the next year (yt+1,p > 0) could be due to seeds 
or seedlings present in the pixel that are not detect-
able via satellite imagery. We fitted a Poisson GLM 
with a log-link function (Eq.  1) to obtain the popu-
lation growth and density dependence parameters, � 
and � , respectively. To account for spatial heteroge-
neity within wildfires we added cluster identity of a 
pixel as a random effect and fit Poisson generalized 
linear mixed model (GLMM) to the same response 
(random effect indices in Eqs. 1 & 2 not shown).

To estimate sagebrush cover immediately after a 
wildfire event (the initial population cover, �0 ), we 
subset the sagebrush trajectories to include only the 
first five years after a wildfire and fit a Poisson GLM 
(at the regional and wildfire levels) and GLMM (at 
the level of clustered pixels) models with a log-link 
function using time since wildfire as a predictor and 
cluster as a random effect (Eq. 2). In the absence of 
subsequent wildfires this model assumed an exponen-
tial, density-independent growth of sagebrush with 
rate � during the initial years post-wildfire event and 
was parametrized using the first five years of the sage-
brush cover trajectory, where the initial post-wildfire 
population size, �0 , is estimated by the intercept.

Forecasting and accuracy assessment

In order to account for environmental variation, we 
fit the statistical models following Eqs.  1 & 2 at 
various levels of spatial heterogeneity represented 
by the k-means-based clusters. In total, we fit the 

(1)yt+1 ∼ Poisson
(
exp(� + � log

(
yt
)
+ log

(
yt
)
)
)

(2)yt ∼ Poisson
(
exp(�0 + �t)

)
, for t = 1, 2,… , 5

regional model and set of models for each wild-
fire (N = 430) at each level of spatial heterogeneity 
(M = 14), resulting in 6021 models (i.e., 430 × 14 
and the regional model). We incorporated within-
wildfire spatial heterogeneity as random effects 
corresponding to variation at the level of clus-
tered pixels. Consequently, the terms of the equa-
tions and the estimated parameters corresponding 
to growth and density dependence were indexed by 
i-th wildfire and j-th cluster of pixels within that 
wildfire, i.e., �i,j and �i,j. The formulation of the 
Gompertz growth model in Eq. 1 and initial values 
parametrized statistically following Eq.  2 allowed 
us to project sagebrush cover in time using an ana-
lytical solution of the Gompertz model (see Appen-
dix S1 for more details):

where, u(t) is the predicted sagebrush cover in time 
t, K is a population estimated carrying capacity cal-
culated as exp(−�∕� ), and C is a constant equal to 
log(�0∕K ). Indices i and j correspond to the wildfire 
and the cluster of pixels within that wildfire, respec-
tively. For the out-of-sample forecasts, indices m 
and n in Eq. 3 indicate spatially matched wildfire m 
to i and cluster n to cluster j based on environmental 
similarity.

We evaluated the forecasting accuracy by estimat-
ing out-of-sample prediction errors according to our 
three research questions. To address the first question, 
how well the Gompertz model can predict sagebrush 
cover after a wildfire event, we randomly subsampled 
5% of the pixels from each dataset (without replace-
ment) and obtained estimates of sagebrush natural 
regeneration at the regional level. We validated the 
regional model by calculating the errors between 
regional predictions and sagebrush cover trajectories 
in each wildfire. This approach represented ecologi-
cal forecasting using pooled, region-wide population 
parameters only. To address the second question, 
how does spatial matching of wildfires improve the 
regional model, we generated predictions for each 
wildfire using population parameters transferred from 
the reference wildfire using the matching steps at the 
wildfire polygon level. Lastly, we matched two envi-
ronmentally similar clusters of pixels between the 
reference and focal wildfires identified at the wildfire 

(3)u(t)[i,j] = K[m,n] exp
(
C[m,n]e

�[m,n]t
)
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polygon level to test how within-wildfire variation 
impacts forecasting accuracy.

We calculated several metrics of forecast-
ing accuracy to summarize in- and out-of-sample 
errors. To account for wildfires that occurred in 
different years and had varying lengths time series, 
we calculated mean absolute error (MAE) and 
root-mean-squared error (RMSE) ten years after 
a wildfire event (Eqs.  4 & 5). The mean absolute 
error weighs all the errors in the dataset equally, 
while the root mean squared error puts more weight 
on larger errors than smaller deviations between 
observed and predicted data. We also calculated 
proportional MAE and RMSE metrics to put the 
errors in each site relative to its pre-wildfire aver-
age sagebrush cover (Eqs. 6 & 7). Second, we com-
puted the Bias of the predictions for each year to 
estimate the directionality of the error and how it 
changed over the forecast time (Eq. 8). We averaged 
the pixel-level sagebrush cover values within each 
wildfire for the validation, and present accuracy 
metrics based on the difference between our fore-
casts and the spatial average of sagebrush cover in 
each wildfire.

where ei = (ŷi – ȳi) is the difference between the pre-
dicted, ŷ, and an average observed sagebrush cover, 
ȳ, in wildfire i. For models where we accounted for 
within-wildfire heterogeneity, we calculated an aver-
age error per wildfire as ei =

∑�
ŷi,j − yi,j

�
∕M , where 

(4)MAE =
1

N

N∑

i=1

||ei||

(5)RMSE =

√√√
√ 1

N

N∑

i=1

(
ei
)2

(6)MAE% =
1

N

N∑

i=1

||ei||
K∗
i

(7)RMSE% =

√√√
√ 1

N

N∑

i=1

(
ei
)2

K∗
i

(8)BIASt =
1

N

N∑

i=1

||ei,t||, for t = 0, 1, … , T

j indicates the cluster identity and M ∈ {2, 3, …, 14} 
is the number of clusters. The MAE% and RMSE% 
metrics show proportional error relative to the wild-
fire average cover before the wildfire event, K*.

We used ‘brms’ package to fit the regional model 
and the ‘lme4’ package for wildfire and cluster level 
models to obtain the estimates of the population 
parameters (Bates et  al. 2007; Bürkner 2017). For 
all data processing and figures we used R software 
(R Core Team 2021), including the following pack-
ages: ‘raster’, ‘sf’, ‘tidyverse’, and ‘ggplot2’ (Wick-
ham 2011; Hijmans et al. 2015, p. 20; Pebesma 2018; 
Wickham et al. 2019).

Results

How accurately can a simple population growth 
model, i.e., the Gompertz model, forecast natural 
regeneration of post-wildfire sagebrush cover?

The regional model trained on 5% of the pixels 
sampled randomly from each post-wildfire poly-
gon predicted an asymptotic sagebrush cover of 
16.6% (CI95%: 9 – 25; SD = 4.0). In the absence of 

Fig. 3  The results of the regional model representing the 
Gompertz population growth model fit to a subsample of pix-
els from each wildfire. The time series plot shows the NLCD 
and predicted sagebrush cover at the regional level. The red 
and blue thick lines show the average NLCD and predicted 
sagebrush trajectories, respectively, with shaded regions corre-
sponding to one standard deviation (SD) around the mean. The 
thin blue lines illustrate 30 stochastic realizations of sagebrush 
cover over time using a subset of population parameters sam-
pled from the posterior distribution
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repeated wildfires, sagebrush recovery trajectories 
at the regional level followed a monotonic logistic 
population growth curve (Fig. 3, blue thick line). In 
contrast to pixel-level stochastic realizations that are 
highly variable, the average recovery is predicted to 
be positive but slow, with an estimated recovery time, 
indicated by the sagebrush trajectory reaching a pla-
teau, of more than 80  years. The predicted asymp-
totic sagebrush cover (16.6%) was greater compared 
to the average pre-wildfire sagebrush cover across 
sites at 11.6% (5% and 95% quantiles at 3.0% and 
20.5%, respectively). We attribute this difference of 
4% in cover to the dramatic increase in sagebrush 
cover following initial years after the wildfire in the 
NLCD (Fig.  3): increasing the intrinsic growth rate 
under constant density-dependence in the Gompertz 
model would lead to higher asymptotic cover value at 
equilibrium. Nevertheless, the NLCD cover estimates 
were within 2 SD of the predictions in asymptotic 
cover. The MAE for the regional model was higher 
than the wildfire- and cluster-level models regardless 
of whether the validation data set was in- or out-of-
sample. For the regional model, the average out-of-
sample MAE ten years after a wildfire event was 7.5% 
cover (± 5.1% SD), and the proportional error was 
0.65. The regional predictions considerably under-
estimated sagebrush cover during the initial years 

after a wildfire event, although the negative bias in 
the predictions diminished over time (Fig.  4, trajec-
tory labeled as “Region”). The median bias was 
greatest seven years after a wildfire event. Specifi-
cally, the regional model underestimated the averaged 
sagebrush cover by -7.3% (CI95%: -14.92 – -0.43; 
SD = 4.76), and this value decreased over time to 
-2.84% cover (CI95%: -12.02 – 6.03; SD = 3.8) in the 
last year of the validation data set.

How does spatial matching of wildfires combined 
with the population model improve the forecasting 
accuracy of natural regeneration?

Matching pairs of environmentally similar wildfires 
led to  a nearly two-fold reduction in out-of-sample 
MAE, relative to the regional model. The MAE for 
sagebrush cover predicted using data from spa-
tially matched wildfires was 4.8% (± 5.2% SD) with 
a proportional error of 0.49 (Fig.  5, Appendix S1: 
Table S2). The bias observed at the level of matched 
wildfires was considerably lower than the regional 
predictions. However, the forecasts still underpre-
dicted sagebrush cover trajectories for almost the 
entire duration of the validation dataset (Fig. 4, trajec-
tory labeled as “Site”). The greatest bias was between 
the 6th and 11th years at -2.7%, and the temporal 
patterns in the bias were comparable to the regional 
model.

Fig. 4  Bias in the out-of-
sample forecasts of sage-
brush cover by each of the 
tested environmental clus-
tering scheme complexity. 
The cluster number refers 
to the number of environ-
mental clusters used in 
the k-means algorithm for 
spatial matching. The bias 
is calculated as the mean 
of the out-of-sample errors 
for each year. The colored 
lines indicate average bias 
across all wildfires, whereas 
the shaded regions show 
one standard deviation (SD) 
around the mean
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Does further accounting for within-wildfire 
heterogeneity improve the forecasting accuracy of 
natural regeneration?

The addition of random effects to the GLMs at the 
level of within-wildfire variation,  i.e., the results 
of  k-means  clustering corresponding to within-wild-
fire heterogeneity, resulted in a reduction in the errors 
compared to the wildfire-level models (Fig. 5). Over-
all, a higher number of clusters led to improvements 
in MAE, MAE%, and bias (Appendix S1: Table S2), 
but the pattern was non-linear and led to diminishing 

improvements as the number within-wildfire clusters 
increased. After we included the random effects and 
spatial matching at the wildfire and within-wildfire 
levels, the MAE was reduced to 3.5%, with a margin-
ally improved proportional error of 0.48. Similarly, 
the standard deviation of the errors was the small-
est for the model with 14 clusters. The bias in these 
errors was marginally positive initially, indicating that 
models overpredicted sagebrush cover. Negative bias 
began the 6th year after a wildfire, and was small-
est in the model with 14 clusters. After the 6th year, 
the trend stabilized at -1.17% (CI95%: -8.43 – 6.25; 

Fig. 5  The relationship between forecasting accuracy and 
environmental clustering scheme complexity. (A) shows the 
error between predicted and observed sagebrush cover 10 years 

after a wildfire event. (B) shows the distribution of errors 
across wildfires calculated as the difference between the pre-
dicted and observed average trajectories
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SD = 4.58) for the subsequent years of the time series 
(Fig. 4, trajectories labeled as “Cluster 3–14”). As the 
number of clusters increased, the forecasting accuracy 
also increased, indicating the benefits of account-
ing for environmental heterogeneity when matching 
environmentally similar wildfires and clusters of pix-
els. However, the improvements in forecasting accu-
racy largely plateaued in models with ten clusters or 
greater.

Discussion

In this study, we combined remotely sensed data with 
population models to forecast natural regeneration of 
sagebrush after wildfire, foundational shrub species in 
the Great Basin. Our study represents a step towards 
developing models for natural regeneration that could 
be used to help prioritize restoration efforts in the 
sagebrush steppe (Duchardt et  al. 2021). Ecological 
forecasts of post-wildfire natural regeneration could 
point land managers to where the recovery poten-
tial is high and sagebrush can recover with minimal 
intervention. The relatively low level of absolute error 
(i.e., MAE 3.54% cover for the Cluster 14 model) 
achieved by the best-performing model illustrates 
how the combination of simple and robust analytical 
tools can result in satisfactory forecasting accuracy 
with relevance for land management decisions. In 
contrast to field plot-level studies that suggest the rate 
of natural regeneration of sagebrush steppe is low and 
vegetation treatment effects are highly variable (Knut-
son et al. 2014; Copeland et al. 2018; Germino et al. 
2018), our analysis at the regional level demonstrates 
that on average, sagebrush population recovery after 
a single wildfire tends to follow similar trajectories.

The regional-level model provides insights into 
natural regeneration processes in sagebrush at a broad 
geographical scale, despite relatively low forecast-
ing accuracy. In the absence of repeated wildfires, 
our results suggest that sagebrush recovery is likely 
to be slow, with an estimated recovery time of more 
than 80 years (Fig. 3). Illustrative of this pattern, ten 
years after a wildfire, the average recovery across all 
sites was 62% relative to the pre-wildfire sagebrush 
cover, while only 14% of the sites were predicted 
to recover at or above the pre-wildfire levels at this 
stage. The estimated rate is lower than the rate of 
natural regeneration characteristic of higher-elevation 

sagebrush populations, where the recovery could 
take 20–45  years (Ziegenhagen 2003; Baker 2006; 
Ziegenhagen and Miller 2009). Although the NLCD 
represents sagebrush at the genus level, the mean and 
median average elevation across our sites was under 
1700 m and is likely to be more representative of the 
Wyoming big sagebrush (A.t. wyomingensis). Wyo-
ming big sagebrush in lower elevation landscapes 
historically has longer fire-return intervals and slower 
rates of natural regeneration (Miller et al. 2011; Bates 
et  al. 2020), making them vulnerable to altered fire 
regimes and ecosystem transformation (Mahood and 
Balch 2019).

The negative bias in the regional model supports 
the evidence from previous field studies that satel-
lite-derived estimates of shrub cover, such as the 
NLCD, may overestimate cover in the initial stages, 
i.e., 1–3 years, after a wildfire event (Applestein and 
Germino 2021). Starting from the second year post-
wildfire, our model’s underestimation of sagebrush 
cover, relative to NLCD time series, likely emerges 
from the model’s representation of demography. The 
combination of growth rate and density dependence 
feedbacks in the Gompertz model predicts considera-
bly slower recovery in the early stages of regeneration 
than that observed in the NLCD. We consider this 
underestimation a feature of the Gompertz model, not 
an analytical shortcoming, as our biologically mean-
ingful models atone for the tendency in the NLCD 
data to overestimate early recovery, likely due to sat-
ellite measurement error (Applestein and Germino 
2021). The mortality of young sagebrush recruits dur-
ing the transient stages of regeneration post-wildfire 
is another demographic mechanism that may slow 
down the rate of natural regeneration and is undetect-
able from the analysis of satellite data alone (Shriver 
et al. 2019). In addition to demographic mechanisms, 
errors in the NLCD data, including potential missed 
detections of small-statured sagebrush and errors 
propagated from the Landsat spectral reflectance, may 
lead to inflated estimates of density dependence and 
contribute to the negative trend in forecasting bias 
(Lebreton and Gimenez 2013). Explicitly account-
ing for noise in the statistical Gompertz models will 
likely improve the future forecasts of post-wildfire 
regeneration of sagebrush populations.

Our framework corresponds to a scenario 
where land managers must decide on restoration 
action immediately after a wildfire, with minimal 
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site-specific data on sagebrush population dynamics. 
The capacity to achieve transferable forecasts across 
the Great Basin ecoregion relied upon spatial match-
ing to account for environmental heterogeneity. The 
spatial matching of wildfires and within-wildfire pixel 
clusters revealed that accounting for spatial heteroge-
neity by dividing wildfires into 5–10 environmentally 
distinct units may be a suitable scale for out-of-sam-
ple sagebrush cover forecasts (Fig.  5). When evalu-
ating the performance of the models ten years after 
a wildfire, spatial matching enabled absolute error in 
sagebrush forecasts within 1% cover of those using 
the in-sample predictions (Appendix S1: Table  S2). 
We observed an increasing improvement in forecast-
ing accuracy from the regional level to higher clus-
tering levels within wildfires. This trend illustrates 
how spatial heterogeneity within and among wildfires 
driven by climate, soil properties, topography, and 
pre-disturbance conditions can represent a significant 
source of variation in plant demography and forecast-
ing errors. Our results suggest that an optimal spatial 
grain for forecasting natural regeneration and resto-
ration planning may include coarsely divided spatial 
units within wildfires, while increasingly fine-scale 
spatial units bear diminishing returns and may present 
logistical and analytical costs.

We observed the most significant reduction in the 
forecast errors between the regional and wildfire-level 
models with subsequent diminishing improvements 
after accounting for heterogeneity at progressively 
finer spatial grain (Fig. 5). While within-wildfire vari-
ation proved important, the relationship between the 
errors and the degree of spatial clustering largely pla-
teaued beyond ten clusters, contrasting with experi-
mental and observational evidence that highlights 
local conditions as a strong driver of post-wildfire 
sagebrush recovery (e.g., Arkle et al. 2022; Germino 
et al. 2018). Specifically, our results suggest that land 
management units, e.g., relatively small wildfires or 
grazing allotments, could be a representative spa-
tial grain to account for spatial heterogeneity when 
forecasting an average trajectory for the recovery of 
sagebrush cover. One potential explanation for this 
discrepancy is that cover trajectories reflect temporal 
changes that integrate over the entire plant life cycle. 
In contrast, focusing on a single demographic stage, 
e.g., individual recruits or seedlings, leaves more 
room for demographic stochasticity and stage-specific 
environmental responses (Yang et al. 2022).

Combining the Gompertz growth model with the 
NLCD trajectories and hierarchical spatial matching 
enabled a scalable approach to quantify the popula-
tion process underpinning natural regeneration in 
sagebrush across the Great Basin. Our approach esti-
mates biologically interpretable parameters at large 
spatial extents, a historically challenging task in plant 
ecology (but see Schultz et  al. 2022; Shriver et  al. 
2019). These parameters include population growth 
rate and density dependence, both relevant to address 
applied and theoretical questions. For example, the 
intrinsic growth rate of a foundational shrub spe-
cies directly links to ecosystem resilience, a charac-
teristic that is central to conservation management 
and ecosystem integrity (Chambers et  al. 2017). A 
cross-scale analysis of sagebrush resilience could aid 
resource managers in determining restoration plans 
based on the already established management guide-
lines of habitat resilience and resistance (Chambers 
et al. 2019; Arkle et al. 2022). Our study qualitatively 
expands previous efforts in predicting sagebrush 
steppe resilience (mainly based on biophysical site 
characteristics) by incorporating endogenous popula-
tion processes that are quantified from observed cover 
trajectories following a wildfire event. Studies that 
relate satellite-derived population dynamics to bio-
physical conditions will improve our understanding 
of natural regeneration in the sagebrush steppe. For 
example, in conjunction with site-specific biophysi-
cal data, predicted positive recovery in low-resilience 
sites could provide valuable insights to improve the 
forecasting models or reveal biological relationships 
that warrant further empirical investigations. Lastly, 
the strength of density dependence in a population 
quantified by the Gompertz model can be a determi-
nant of multiple dimensions of population and com-
munity stability, including resistance and persistence 
responses to environmental variation (Harrison 1979; 
Radchuk et al. 2019b).

Remote sensing opens new ways to detect and 
analyze density dependence and coexistence in 
natural ecosystems on a large scale. Nevertheless, 
remotely sensed data also presents new problems 
related to imperfect detection of vegetation cover 
from space-borne satellites (Caughlin et  al. 2021). 
In the context of the NLCD vegetation cover trajec-
tories, some error in cover measurements is likely 
inescapable (Rigge et  al. 2019; Applestein and Ger-
mino 2021). Methods that can account for imperfect 
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detection when modeling population trends, such as 
state-space models widely used in wildlife popula-
tion ecology are likely to prove invaluable for quan-
tifying plant population trends from remotely sensed 
data (e.g., Dennis et al. 2006). As an example, mod-
els that rely on the state-space approach are promis-
ing to improve ecological inference and predictions 
(Auger-Méthé et al. 2021). The state-space approach 
would help disentangle measurement errors from 
the endogenous and exogenous sources of variation 
(Dietze 2017), and allow for a more nuanced analysis 
of spatio-temporal demographic shifts (Schultz et al. 
2022). Taxa-specific time series data, such as the 
Landsat-derived percent cover data used in our study, 
are increasingly available (Gudex-Cross et  al. 2017; 
Singh et  al. 2020). However, when species-specific 
time series data are not available, our approach can 
be applied to taxonomically coarse data, such as time 
series of per cent tree cover. For example, Caughlin 
et al. (2021) modeled forest recovery using the logis-
tic growth model. A combination of remote sensing, 
spatial matching, and state-space models that account 
for temporal autocorrelation will likely expand the 
forecasting horizon for population changes (Adler 
et al. 2020).

In the context of the Great Basin ecological res-
toration, forecasts of natural regeneration can be 
instrumental during the time-sensitive planning and 
implementation of management interventions after 
a wildfire (Bradford et al. 2020). A prompt manage-
ment response to a wildfire event can be critical given 
the time-sensitive decisions in light of the reduced 
resistance to cheatgrass (Bromus tectorum) invasions 
or favorable weather windows for a restoration treat-
ment (Applestein et  al. 2021; Copeland et  al. 2021; 
Pilliod et  al. 2021). Our forecasting framework ena-
bles early predictions of natural regeneration without 
local field data, making the information available for 
the initial management response. To date, managers 
and practitioners already use landscape and wildfire 
information that can help predict the likelihood of 
natural regeneration, including topographic informa-
tion, burn severity, and site resilience indices (USDI 
2007; Arkle et al. 2014). Additional ecological data is 
available from the NLCD and Land Treatment Explo-
ration Tool that provide pre-wildfire estimates of 
sagebrush cover and management-oriented site char-
acteristics (Pilliod et al. 2018). To further assist man-
agement decisions, our study contributes quantitative 

forecasts of sagebrush population recovery that could 
be used to develop rapid response plans for restora-
tion, with minimal data collection.

The predictions can also readily integrate site-
specific information that will have become available 
during the first years of monitoring, paving the way to 
improvements in the forecasts over time and adaptive 
management practices (Applestein et al. 2022; Brud-
vig and Catano  2021; Dietze 2017). The early-stage 
forecast based on spatial matching of the reference 
and the focal wildfires assumes that the latter follows 
the same recovery trajectory as the former based on 
ecological similarities between them. However, we 
suggest that empirically estimated sagebrush cover 
based on local ecological monitoring can substitute 
the statistically estimated parameter (i.e., �0 in Eqs. 2 
& 3) to reflect the initial population cover at the onset 
of recovery. Similarly, post-wildfire monitoring could 
provide an updated, site-specific parameter for the 
density-independent population growth, � , indicat-
ing the direction of a growth trajectory and how fast 
the population may approach its predicted equilib-
rium. Post-wildfire monitoring data will be essential 
to reflect the effect of local climate fluctuations and 
site-specific biotic conditions that can dramatically 
change long-term population dynamics (Shriver et al. 
2019; O’Connor et  al. 2020). Importantly, forecasts 
may point to post-wildfire areas with high resilience 
and recovery potential that may obviate the need to 
apply active restoration measures and reallocate 
resources to other areas. Taken together, the initial 
and iteratively improved forecasts of resilience in 
the foundational shrub species provide a platform for 
an adaptive management framework and productive 
feedback between ecological monitoring, modeling, 
and decision making (McCord and Pilliod 2021).

Our approach provides modeling tools for fore-
casting, following calls to advance simple and 
transparent ecological forecasts (Dietze et al. 2018; 
Shriver et  al. 2018). Several improvements are 
within reach to adapt our framework to local appli-
cations and enhance forecasting accuracy. These 
may include: (i) improved remotely sensed data 
products and statistical methods to account for 
measurement error (Allred et al. 2021); (ii) inform-
ing predictive models with local knowledge and 
monitoring data (McCord and Pilliod 2021); and 
improving spatial matching without the necessity to 
refit the statistical models. For example, combining 
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spatial and temporal matching may address differ-
ences among wildfires separated by decades as cli-
mate change continues (Kleinhesselink and Adler 
2018). Non-parametric matching can also utilize 
other remotely sensed data, including the occur-
rence or abundance of invasive annual grasses 
(e.g., Bromus tectorum) that can affect the recovery. 
Finally, analytical additions to the framework could 
include scenarios of repeated wildfires, reduced 
fire-return intervals, and non-stationary ecological 
interactions that evolve with changing disturbance 
regimes (Mahood and Balch 2019).

Conclusions

The presented forecasting framework combines satel-
lite information, spatial matching and simple popula-
tion process models that can be readily integrated into 
management scenarios and support local decision-
making. In contrast to land cover change methods that 
rely on detecting linear trends (e.g., Shi et al. 2022), 
the Gompertz model represents biologically meaning-
ful processes, including leveling off for populations 
near carrying capacity. The Gompertz model is also 
straightforward to fit using widely available software 
packages for generalized linear models (GLMs). 
In conjunction with the Gompertz model, spatial 
matching can account for regional heterogeneity by 
incorporating diverse sources of information. Our 
spatial matching approach could be adapted to inte-
grate experiential and traditional ecological knowl-
edge, providing opportunities for cross-disciplinary 
collaborations and co-development of management 
strategies (Berkes et al. 2000; Kimmerer 2011; Fleis-
chman et al. 2022). Altogether, our approach provides 
scalable forecasts of natural regeneration to support 
cost-efficient restoration strategies in post-wildfire 
landscapes.
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