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Abstract Cloud‐to‐ground (CG) lightning is a major source of summer wildfire ignition in the western
United States (WUS). However, future projections of lightning are uncertain since lightning is not directly
simulated by most global climate models. To address this issue, we use convolutional neural network (CNN)‐
based parameterizations of daily June‐September CG lightning. CNN parameterizations of daily CG lightning
occurrence at each grid cell use fields of three thermodynamic variables—ratio of surface Moist Static Energy
(MSE) to 500 hPa saturation MSE, 700–500 hPa lapse rate, and 500 hPa relative humidity. Applying these
parameterizations to the Community Earth System Model version 2 Large Ensemble, we find widespread
increases in CG lightning days across much of the region by the mid‐21st century (2031–2060) under a moderate
warming scenario. Projected increases are pronounced in the northern WUS where many grid cells experience
4–12 additional CG lightning days compared to 1995–2022 and are driven by increases in all three
thermodynamic variables. To assess the risk of lightning‐ignited wildfire (LIW) ignition, we also quantify the
concurrence of CG lightning with high Fire Weather Index (FWI) days. By 2031–2060, CG lightning will
coincide more frequently with high FWI, but the magnitude of increases relative to CG lightning days varies
across the region. Future projections of CG lightning and LIW risk can be useful for understanding the changing
risks of associated hazards, and guide wildland fire management and suppression planning.

Plain Language Summary Cloud‐to‐ground lightning is a major source of wildfire ignition during
the summer in the western United States, but future projections of lightning and lightning‐ignited wildfire (LIW)
have been limited. We use a machine learning technique—convolutional neural networks–to predict lightning
based on three meteorological variables. These variables describe aspects of atmospheric moisture and vertical
instability and therefore capture conditions favorable for lightning occurrence. We then apply these machine
learning‐based models to output from GCM simulations to project cloud‐to‐ground lightning days in the future.
Our projections show an increase in cloud‐to‐ground lightning days in the mid‐21st century (2031–2060),
especially in the interior northwestern United States. These increases are driven by widespread projected
increases in all three meteorological variables used for lightning prediction. We also project an increased
likelihood of cloud‐to‐ground lightning occurring on days with meteorological conditions favorable for
wildfires, thus increasing the risk of LIWs. These findings are important for understanding changes to LIW risk,
and for planning wildland fire management and suppression needs in a warming climate.

1. Introduction
In the western United States (WUS), wildfires ignited by cloud‐to‐ground (CG) lightning during the summer are
responsible for more than two‐thirds of the total burned area (Abatzoglou et al., 2016). Smoke from these fires has
detrimental effects on air quality and public health and has partially reversed air quality improvements stemming
from the Clean Air Act (Burke et al., 2023; Kalashnikov, Schnell, et al., 2022; J. Liu et al., 2016; McClure &
Jaffe, 2018; D. Zhang et al., 2023). As the climate continues to warm in theWUS, the risk of wildfires—including
those sparked by lightning—is projected to grow due to drier vegetation (Abatzoglou, Battisti, et al., 2021; Brown
et al., 2021; Li et al., 2020; McGinnis et al., 2023; Pérez‐Invernón et al., 2023). Furthermore, recent research
indicates that lightning could become more frequent in parts of the globe (Janssen et al., 2023; Pérez‐Invernón
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et al., 2023; Whaley et al., 2024), amplifying the risk of increased wildfire activity. These projections underscore
the need to understand and prepare for the potential societal and environmental consequences of increased
wildfire activity. In addition to wildfire risk assessments, understanding changes to CG lightning is also crucial as
it poses direct risks to human safety and infrastructure.

Most state‐of‐the‐art global climate models (GCMs) are unable to directly simulate lightning because their coarse
spatial resolution prevents them from capturing the fine‐scale physical processes involved in lightning produc-
tion. To project future lightning, previous studies have relied on convective parameterizations, using proximal
variables like cloud top height, convective ice and mass flux, or the product of convective available potential
energy (CAPE) and precipitation rate (Allen & Pickering, 2002; Chen et al., 2021; Finney et al., 2018; Janssen
et al., 2023; Magi, 2015; Pérez‐Invernón et al., 2023; Price & Rind, 1992; Romps et al., 2014). Projections have
been shown to vary substantially depending on the specific parameterization used and the microphysics scheme of
the GCM, leading to uncertainty in the potential changes to future lightning activity (Charn & Parishani, 2021;
Clark et al., 2017; Etten‐Bohm et al., 2024; Romps, 2019). To overcome these limitations, recent studies have also
developed simpler lightning parameterizations based on large‐scale meteorological variables that are directly
simulated by GCMs, employing methods such as logistic regression (Etten‐Bohm et al., 2021, 2024; Whaley
et al., 2024), random forests (N. Liu et al., 2022), and neural networks (Cheng et al., 2024; Kalashnikov
et al., 2024; Verjans & Franzke, 2025).

However, most parameterizations have been derived from lightning observations in the global tropics and sub-
tropics where the necessary ingredients for convection may differ in importance compared to the WUS, poten-
tially introducing biases when applied over this region. TheWUS is a region of complex terrain and is additionally
represented by more than one distinct lightning regime. For example, lightning tends to occur in conjunction with
deep convection in the North American Monsoon (NAM) core region of the interior Southwest. On the other
hand, areas on the NAM periphery are prone to “dry” lightning, which occurs under specific atmospheric con-
ditions (e.g., mid‐level moisture overlying a dry lower troposphere) that may not be captured by parameterizations
developed at national to global scales (Kalashnikov, Abatzoglou, et al., 2022; Nauslar et al., 2013; Rorig &
Ferguson, 1999). Importantly, widely‐used lightning parameterizations such as the product of CAPE and the
precipitation rate of Romps et al. (2014) may not capture dry lightning, as dry lightning can occur without high
surface‐based CAPE or heavy precipitation.

To develop local parameterizations that address these gaps, we employ Convolutional Neural Network (CNN)‐
based CG lightning parameterizations developed in Kalashnikov et al. (2024) that were trained at individual
1° × 1° grid cells of the WUS to project CG lightning days for 2031–2060 across this region. To identify the key
environmental factors driving projected changes in CG lightning, we also interrogate changes in atmospheric
circulation and the thermodynamic fields used for lightning prediction. Prior to Kalashnikov et al. (2024),
lightning parameterizations targeted for the WUS, whether based on convective parameters or the large‐scale
environment, were lacking. As our parameterizations were developed by training models at individual grid
cells, we account for localized conditions conducive to lightning formation. The CNNs were also explicitly
designed to model CG lightning, as CG lightning is uniquely capable of igniting wildfires due to its direct contact
with the ground. Importantly, to the best of our knowledge our analysis is the first to leverage large ensemble
climate simulations to understand future trajectories of these risks across the WUS and their uncertainty due to
internal climate variability.

However, CG lightning by itself may not pose a risk of wildfire ignition if accompanied by heavy rainfall or
contacting wet fuels (Alexander, 1927; Rao et al., 2023). Indeed, previous studies show only a weak correlation
between interannual WUS burned area and lightning activity (e.g., Abatzoglou et al., 2016). To better understand
the future risk of lightning‐ignited wildfires (LIWs), it is critical to consider the concurrence of CG lightning and
weather conditions that enable wildfire ignition and spread. Studies that have explicitly accounted for wildfire
drivers in combination with lightning projections have been limited and represent an emerging area of research
(Krause et al., 2014; Pérez‐Invernón et al., 2023; Price & Rind, 1994; Whaley et al., 2024). Thus, we also quantify
changes in the Fire Weather Index (FWI; Wagner, 1987), which serves as a proxy for the meteorological and
climatic conditions conducive to ignitions and large wildfire activity across different biomes (Barbero et al., 2014;
Di Giuseppe et al., 2018; Urbieta et al., 2015) and their intersection with CG lightning days.
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2. Data and Methods
2.1. Convolutional Neural Networks

In Kalashnikov et al. (2024), we trained individual CNNs at each 1° × 1° grid cell of the conterminous WUS
(initial number of CNNs trained = 285) to predict the daily occurrence (≥1 CG flash) or non‐occurrence of CG
lightning at that grid cell. CNNs are well‐suited for capturing complex and non‐linear relationships in geophysical
phenomena (Baño‐Medina et al., 2021; Molina et al., 2021, 2023; Toms et al., 2020). The CNNs were trained
using meteorological data from the National Aeronautics and Space Administration's (NASA) Modern‐Era
Retrospective Analysis for Research and Applications, Version 2 (MERRA‐2; 0.5° × 0.625°) (Gelaro
et al., 2017) as predictor variables and CG lightning data from the National Lightning Detection Network (NLDN;
0.1° × 0.1°) as the response variable over June–September 1995–2022 (hereafter, “warm season”). We focus our
analysis on the warm season since it captures the vast majority of WUS lightning activity and wildfire burned
area, and provides a relatively consistent set of summertime lightning‐producing meteorological patterns for CNN
training (Abolafia‐Rosenzweig et al., 2022; Kalashnikov et al., 2020). Both data sets were upscaled to 1° × 1°
resolution: MERRA‐2 via bilinear interpolation and NLDN by counting any CG lightning observed within
constituent 0.1° grid cells as a lightning day in the overlying 1° grid cell. The 1° spatial resolution was chosen to
be compatible with current state‐of‐the‐art GCMs and to reduce computational cost during CNN training. Daily
fields of these meteorological variables (see Section 2.2) were interpolated to equal‐area 20 × 20 grids spanning
2000 km on each side (100 km × 100 km resolution) and centered on each grid cell for local CNN training.
Important spatial features in adjacent and upwind regions contribute useful information for prediction, and CNNs
learn to effectively ignore irrelevant features during training (Baño‐Medina et al., 2021; Kalashnikov et al., 2024).

In this study, we utilize the reduced three‐predictor CNNs from Kalashnikov et al. (2024) due to lower
computational cost and similar performance to the more complex CNNs tested in that study (see Figure S3 in
Supporting Information S1 therein). Therefore, for each day, the input to each local CNN is a three‐dimensional
matrix of size 20 latitude × 20 longitude × 3 input variables. The CNN architecture comprises two convolutional
layers with 3× 3 filters, each followed by a max pooling layer with 2× 2 filters, and the output is passed to a dense
layer with 16 neurons. We use He uniform initialization (He et al., 2015) and Rectified Linear Unit activation in
the convolutional and first dense layer. Inputs are then vectorized and sent to a classification layer with two
neurons and a Softmax activation function, producing continuous probabilities (ranging from 0 to 1) for each
classification: CG lightning or non‐lightning. Days with model‐predicted CG lightning probabilities >0.5 are
classified as CG lightning days. We refer the reader to Kalashnikov et al. (2024) for additional details about CNN
architecture, hyperparameter tuning, and training. The CNNs were developed using TensorFlow 2.11.1 in Python
(Abadi et al., 2015).

2.2. Meteorological Variables

The three thermodynamic variables used for CG lightning prediction are the ratio of surface moist static energy
(MSE) to the saturationMSE at 500 hPa (MSEratio), representing a simple convective proxy wherein a value of>1
indicates a likelihood that ascending air parcels will saturate and condense (Noyelle et al., 2023; Y. Zhang &
Boos, 2023); the vertical temperature difference or lapse rate between the 700 and 500 hPa pressure levels (Γ700–
500), with larger values indicating increased buoyancy for vertical ascent that can invigorate convection; and the
relative humidity at 500 hPa (RH500) which captures the degree of saturation at that level. These variables
parsimoniously capture three‐dimensional temperature and moisture information relevant for lightning formation.
Furthermore, these variables are expected to be reasonably climate‐invariant, that is, their physical relationship
with lightning should be generalizable to a future, warmer climate (Beucler et al., 2024). This is accomplished
through the use of relative quantities such as MSEratio and RH500 rather than absolute quantities such as column
water vapor or specific humidity, as the predictive relationship of the latter may shift with warming. For example,
convection may not increase in the future despite increasing lower‐tropospheric moisture if the saturation profile
remains constant (Beucler et al., 2024; Pascale et al., 2018). However, we note that other tropospheric changes
may affect the predictive relationship between the chosen variables and future lightning activity, including
changes to near‐surface instability or cloud microphysical shifts that could alter lightning production (Clark
et al., 2017).
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2.3. Climate Model Simulations

For projections of lightning days, corresponding variables are obtained or derived from the Community Earth
System Model v2 Large Ensemble (CESM2‐LENS2; hereafter, CESM2) (Danabasoglu et al., 2020; Rodgers
et al., 2021) that uses CMIP6 historical forcings until 2014 and the SSP3‐7.0 scenario for 2015–2100. Single
model initial‐condition large ensembles are useful for quantifying uncertainties in projections of CG lightning,
LIW risk, and the predictor variables due to irreducible internal climate variability (Deser et al., 2012; Lehner
et al., 2020; Tebaldi et al., 2021). Additionally, CESM2 has shown improvement in simulating NAM precipitation
over CESM1 (Meehl, Shields, et al., 2020). CESM2 includes 100 ensemble members with identical external
forcings except for biomass burning emissions, which are from CMIP6 for the first 50 members and smoothed for
the last 50 members. We use the 50 members with time‐varying CMIP6 biomass burning emissions to maintain
consistency of forcings.

The CESM2 variables used are T500 (T500 herein), T700 (T700), and Q500 for the computation of Γ700–500 and
RH500. To derive the MSEratio, we use 2‐m temperature (TREFHT; T2M herein), 2‐m specific humidity
(QREFHT; Q2M), geopotential height at the surface (PHIS) and 500 hPa (Z500; Z500), and T500. To diagnose
accompanying changes in atmospheric circulation, we use Z500 and 500‐hPa winds (WS500) obtained from u and v
winds at that level (U500 and V500, respectively). We examine both raw Z500 and its standardized anomalies (i.e.,
z‐scores), computed from 15‐day windows centered on each day during 1995–2022 and 2031–2060. Standardized
anomalies are calculated for each period separately to account for tropospheric expansion from background
warming. We also quantify changes in the frequency of “ridge breakdown” patterns, which occur when a high‐
pressure ridge over the interior WUS is weakened and displaced by an incoming mid‐latitude disturbance. These
patterns have long been associated with high fire danger, as incoming cold air aloft overrides residual warm air
near the surface to create instability sufficient for convection, while mid‐level moisture and dry air at lower levels
promote the formation of dry lightning (Abatzoglou & Brown, 2009; Kalashnikov et al., 2020; Werth &
Ochoa, 1993). Ridge breakdown events are identified at each grid cell where a Z500 anomaly >1σ is followed
within three days by a <− 0.5σ anomaly.

CESM2 variables are regridded from their native resolution (0.94° × 1.25°) to match the 1° × 1° resolution of the
trained CNNs using bilinear interpolation. All CESM2 maps show the ensemble mean. Results are considered
robust if >75% of ensemble members (at least n = 38) agree on the projected sign of change.

2.4. Bias Correction of Predictor Variables

Mean fields of the CESM2 predictor variables were evaluated over the 1995–2022 warm seasons for biases
compared to MERRA‐2, and all three variables were found to exhibit varying degrees of biases across the WUS
(not shown). As these biases might affect prediction accuracy, we apply a multivariate bias‐correction procedure
to the predictor variables prior their use as inputs to the CNNs. Multivariate bias correction, rather than the more
commonly used univariate approach, is preferable because the CNNs were trained on the predictor variables as a
single input matrix. Therefore, they likely learned to predict CG lightning based on the combined information of
the three predictors, including their individual spatial fields and multivariate dependence. We employ the
“MBCn” procedure from Cannon (2018), which is a multivariate generalization of quantile mapping for climate
variables based on the image transfer algorithm developed by Pitie et al. (2005). This procedure adjusts the
univariate quantiles of each CESM2 variable using quantile delta mapping (Cannon et al., 2015), and further
adjusts their multivariate distribution toward MERRA‐2 (the historical baseline for calibration), while preserving
trends in the climate model data (Cannon, 2018). We first bias‐correct one randomly selected ensemble member,
then apply those quantiles to all 50 members. This removes only the CESM2 model biases while preserving the
natural variability in the ensemble spread (Cannon et al., 2022; Kirchmeier‐Young et al., 2017). The remaining
biases in the individual variables and their covariance are substantially reduced (not shown). The MBCn algo-
rithm is implemented using the xclim Python package (version 0.50.0; Bourgault et al., 2023).

Bias‐corrected meteorological variables from CESM2 are interpolated following the approach described in
Section 2.1 to create 20 × 20 × 3 input matrices for each day across all ensemble members. Prior to input, the
CESM2 predictor variables are rescaled by the maximum values of the corresponding MERRA‐2 data sets used
for CNN training. This preserves absolute changes in the rescaled predictor values between historical and future
climates. The trained CNN models are then applied to predict the occurrence of CG lightning at each corre-
sponding 1° × 1° grid cell using CESM2 data.
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2.5. Wildfire Ignition Risk

We use the FWI from the Canadian Forest Fire Danger Rating System to quantify LIW risk on projected CG
lightning days. The FWI is a widely‐used index for quantifying potential wildland fire ignition and spread that
accounts for both weather and antecedent climatic conditions. It is typically calculated from meteorological
variables at noon local time for operational forecasting. However, due to the barriers in obtaining climate model
data at noon local time, we use daily values of these variables following previous work (Abatzoglou et al., 2019;
Gallo et al., 2023; Touma et al., 2022). We calculate the FWI over the historical period using daily maximum
temperature, daily accumulated precipitation, daily minimum relative humidity, and daily‐average 10‐m wind
speed data from MERRA‐2 using the xclim Python package. Similarly, the FWI is computed using the following
CESM2 variables: 2‐m maximum temperature (TREFHTMX), total precipitation (PRECT), daily‐minimum 2‐m
relative humidity (RHREFHT; RH2M herein), and 10‐m wind speed (U10).

Previous studies have used FWI percentiles (e.g., 95th or 99.9th) to project wildland fire potential (Abatzoglou
et al., 2019; Abatzoglou, Juang, et al., 2021; Goss et al., 2020; Touma et al., 2022, 2023). While this is a valid
approach that considers extreme fire danger from an atmospheric perspective, a potential limitation is that
vegetation and climate‐dependent differences in ignition‐relevant FWI thresholds are not considered. We refine
this approach by identifying empirical FWI thresholds associated with historical LIW ignitions within Bailey's
ecoprovinces (USFS, 1995). Bailey's ecoprovinces are regions of broadly similar climate, vegetation charac-
teristics, and climate‐fire dynamics and have proven useful for partitioning the WUS in prior LIW analyses
(Abatzoglou et al., 2016; Kalashnikov et al., 2023).

Wildfire data are sourced from the Fire Program Analysis Fire‐Occurrence Database that documents all wildfires
from federal, state, and local reporting agencies in the United States between 1992 and 2020 (Short, 2022). We
select fires labeled as “natural” that attained a final burned area >1 ha (Fusco et al., 2019; Kalashnikov
et al., 2023) during the 1995–2020 warm seasons. Fire latitude, longitude, and discovery dates are then used to
aggregate fire occurrence to daily presence/absence of wildfire discovery at each 1° × 1° grid cell. However, the
fire discovery date may not represent the actual ignition date in the case of holdover fires, which can smolder
undetected for days (Kalashnikov et al., 2023; Schultz et al., 2019). We therefore conduct a backward search for
CG lightning at each 1° × 1° grid cell, starting on days with reported fire discovery and searching up to a
maximum of 5 days prior (Kalashnikov et al., 2023). The closest temporal occurrence of CG lightning prior to the
fire discovery date is considered the LIW ignition day for which the FWI value is extracted. We acknowledge that
this approach may not accurately capture all ignition dates given the uncertainty in the timing and placement of
CG lightning relative to ignition locations, and the potential for meteorological and environmental conditions to
enable longer‐lived holdover fires that ignited prior to the 5‐day search window (Schultz et al., 2019). None-
theless, this approach provides a reasonable approximation of the most recent CG lightning activity prior to fire
discovery.

For each ecoprovince, FWI values from all ignition days (i.e., when CG lightning was observed rather than when
the fire was discovered) at constituent grid cells are aggregated into a single distribution, and the ecoprovince‐
median value is calculated. As a final step, FWI percentiles (calculated from the warm‐season distribution)
that correspond to these median values are computed (Figure S1 in Supporting Information S1). LIWs in all
ecoprovinces ignite with median FWI values between the ∼36th–71st percentiles of the warm‐season distribution
(Figure S1 in Supporting Information S1). We thus note that substantial LIW ignition risk exists at non‐extreme
FWI values, likely due to precipitation and humidity that typically accompany thunderstorms that lead to short‐
term declines in FWI (Barros et al., 2021). Exceedances of these ecoprovince‐specific FWI percentiles are
identified in CESM2 output. If co‐occurring with predicted CG lightning, such exceedances are termed “LIW‐risk
days” that signal a greater risk of LIW ignition where sufficient fuels are available. We also quantify the “LIW‐
risk fraction,” defined as the ratio of LIW‐risk days to the total number of CG lightning days, with a higher
fraction indicating more frequent co‐occurrence of CG lightning days with fire‐conducive FWI.

2.6. Domain Selection

Our study domain is the conterminousWUS.We start with the 285 1°× 1° grid cells for which CNNswere trained
in Kalashnikov et al. (2024). This initial domain extended from 32 to 49°N latitude and from the Pacific Ocean to
104°W longitude and excluded grid cells that experience CG lightning on less than 10% of warm‐season days, as
the small sample sizes were suboptimal for CNN training (see Figure 1 in Kalashnikov et al., 2024). Next, we
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exclude grid cells with low CNN classification performance. These locations exhibit either a precision‐recall Area
Under the Curve of <0.5 (i.e., no classifications skill), or prediction bias exceeding ±25% of total CG lightning
days when applied to MERRA‐2 and compared to NLDN observations over the historical period. We assign the
remaining grid cells into the 11 Bailey's ecoprovinces that are fully contained within the WUS and experience
meaningful LIW activity (Figure 1) (Kalashnikov et al., 2023). Grid cells are assigned if >50% of their area
belongs to that ecoprovince. To ensure that all remaining grid cells can experience impactful wildfires, we apply a
burnable/unburnable mask using the Global Land Data Assimilation System vegetation classes. Grid cells with
dominant vegetation classes consisting of “Permanent Wetland,” “Cropland,” “Urban and Built‐Up,” “Cropland/
Natural Vegetation Mosaic,” “Snow and Ice,” or “Barren or Sparsely Vegetated” are considered unburnable as
they rarely foster LIWs and are therefore excluded from analysis, while all other grid cells are considered
burnable. We focus our analyses on the 193 retained grid cells with consequential CG lightning and LIW activity
in the WUS, and where CG lightning can be reliably predicted by the CNNs (Figure 1).

3. Results
3.1. Evaluation of CG Lightning Parameterizations

The locally‐trained CNN‐based lightning parameterizations over the CESM2 model years 1995–2022 reproduce
the observed spatial patterns of warm‐season CG lightning days across the WUS with high fidelity, with a spatial
correlation coefficient of r = 0.98 between observations and predictions (Figures 1a and 1b). The CNNs capture
the northwest to southeast gradient of increasing lightning activity, particularly associated with the NAM core
region. Biases between observed and CESM2‐simulated CG lightning days are present across most of the domain
but are within 36% in all ecoprovinces (Figure 1c). Negative biases are found in the Northwest, where CNNs
predict >12 fewer CG lightning days per warm season in some locations in Idaho, eastern Oregon, and western
Montana. Conversely, positive biases of 4–12 CG lightning days are found over southeastern parts of the WUS.
However, due to the climatologically larger number of CG lightning days within the NAM core region, positive
biases do not exceed 5% in any ecoprovince (Figure 1c). CESM2 also reproduces the observed climatology of
LIW‐risk days (spatial correlation coefficient r = 0.94), which follow the same spatial pattern as CG lightning
days but occur about one‐third as frequently across the WUS (Figure S2 in Supporting Information S1).
Underpredictions are prevalent throughout the WUS except for Arizona and New Mexico (Figure S2c in Sup-
porting Information S1).

3.2. CESM2 Projections of CG Lightning and LIW‐Risk Days

Next, we quantify mid‐21st century projections (2031–2060) of CG lightning and LIW‐risk days in CESM2, and
report widespread increases across the WUS relative to the historical period (1995–2022; Figures 2a and 2b).

Figure 1. (a) Observed seasonal‐average number of days with at least one cloud‐to‐ground (CG) lightning flash in 1° × 1° grid cells during June‐September (1995–2022)
from the National Lightning Detection Network, and (b) predicted number of CG lightning days using convolutional neural networks applied to CESM2, obtained from
the average of 50 ensemble members. Inset text in (b) is the spatial correlation between observed and predicted CG lightning days. (c) Biases in CG lightning days
between observations and CESM2 predictions. Ecoprovince names are provided in adjoining table along with percentage biases between observations and predictions
for each ecoprovince.
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Increases in CG lightning days are robust (>75% ensemble agreement) across the northern half of the domain,
suggesting these increases are likely even after accounting for internal climate variability (Figure 2a). Increases
are especially pronounced across the Middle Rockies (+8.9 days), Intermountain Semi‐Desert (+6.0 days), and
Cascades (+4.7 days) ecoprovinces (Figures 2a and 2c). Meanwhile, projected increases are generally weak and
not robust across the southern half of the domain. In contrast to the spatial variations in CG lightning days,
projected increases in LIW‐risk days are ubiquitous (∼98% of grid cells) and robust across nearly the entire

Figure 2. Ensemble‐mean projected changes in (a) CG lightning days and (b) LIW‐risk days between historical (1995–2022)
and mid‐century (2031–2060) periods during June‐September. Plus signs (dots) indicate where >75% of ensemble members
agree on increases (decreases). (c) CESM2 ensemble distribution of projected changes in CG lightning and LIW‐risk days
averaged across ecoprovinces. Horizontal lines within boxplots indicate medians and whiskers represent spread of the 50
ensemble members. Ecoprovince numbers in (c) correspond to numeric labels in (a). Text along bottom of (c) shows
ensemble‐mean changes, with * indicating that a majority of grid cells have>75% ensemble agreement on the sign of change
in that ecoprovince.
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domain, but are most pronounced in eastern parts including the Southern Rockies (+3.4 days) andMiddle Rockies
(+3.0 days) (Figures 2b and 2c).

Notably, many grid cells in Utah and Arizona that see non‐robust increases or even decreases in CG lightning days
are projected to experience more LIW‐risk days due to increases in FWI (Figures 2c and 3a). Conversely, many
northern areas will see smaller increases in LIW‐risk days compared to increases in CG lightning days due to only
modest increases and even decreases in FWI especially in parts of the Intermountain Semi‐Desert ecoprovince,
that are in turn driven by increases in warm‐season precipitation (Figures 3a and 3c). The Middle Rockies are
another example, with simulated changes of +8.9 CG lightning days but only +3.0 LIW‐risk days per warm
season (Figure 2c). Nevertheless, most of the WUS, or ∼92% of grid cells, is projected to see increases in the
LIW‐risk fraction (defined as the ratio of LIW‐risk days to overall CG lightning days) compared to 1995–2022
due to widespread increases in FWI during the warm season (Figures 3a and 4). FWI increases are a byproduct of
increasing T2M and decreasing RH2M (Figure 3b, Figure S3c in Supporting Information S1), consistent with other
projections for this region (e.g., Abatzoglou et al., 2019; Yu et al., 2023). Increases in the LIW‐risk fraction
suggest that CG lightning is more likely to produce LIWs in the future relative to present climate. Increases are
robust across many areas, with a notable exception being the western Great Basin where some grid cells project a
decline in the LIW‐risk fraction by mid‐century. These locations show robust increases in warm‐season pre-
cipitation of 5–20 mm and consequent decreases in FWI despite warming T2M of 1.5–2.5°C (Figures 3a and 3c,
Figure S3c in Supporting Information S1). Coupled with a simultaneous increase in overall CG lightning days
(Figure 2a), these trajectories are consistent with a possible extension of the NAM monsoonal anticyclone
northwestward from its present‐day position (Pascale et al., 2018; see also Section 3.3).

When looking at the monthly scale, projected CG lightning increases are largely uniform during June‐August
across the northern WUS, with many grid cells expecting increases of 2–4 days per month (Figures S4a–S4c,
Table S1 in Supporting Information S1). Notably, projected monthly changes in CG lightning days are weak and
non‐robust across most of the interior Southwest, reflecting large ensemble spread and uncertainty in future
directions of convective activity over this region (Figures S4a–S4d in Supporting Information S1; see also
Figure 2c). These findings likely reflect the well‐known uncertainties in NAM projections (e.g., Kelly &
Mapes, 2010; Pascale et al., 2019; Wallace & Minder, 2024). Monthly increases in LIW‐risk days, on the other
hand, are concentrated in the eastern WUS and over July‐August, peaking at a ∼1.5 days increase over the
Colorado Plateau and Southern Rockies in August (Figures S4e–S4h, Table S2 in Supporting Information S1).
Importantly, none of the ecoprovinces project a decrease in LIW‐risk days in any month (Table S2 in Supporting
Information S1).

3.3. Drivers of Projected CG Lightning Changes

To understand the physical drivers of the projected changes in future CG lightning days, we analyze individual
changes in the thermodynamic predictor variables and the associated large‐scale circulation patterns. On the

Figure 3. Ensemble‐mean changes in: (a) Fire Weather Index and two key components of the FWI: (b) 2‐m relative humidity
(RH2M), and (c) precipitation between historical (1995–2022) and mid‐century (2031–2060) during June‐September. Plus
signs (dots) indicate where >75% of ensemble members agree on increases (decreases).
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seasonal timescale, MSEratio and RH500 increases are robust nearly every-
where (Figures 5a and 5b). Meanwhile, robust Γ700–500 increases are projected
for the northern WUS (Figure 5c), overlapping with the areas of largest CG
lightning increases (Figure 2a). When looking at the monthly scale, increases
in the MSEratio also appear to drive the spatial patterns of CG lightning in-
creases (Figures S5a–S5d in Supporting Information S1). For example, in-
creases in both quantities are apparent during June–August in an arc from
California northeastward to western Montana (Figures S4a–S4c, S5a–S5c in
Supporting Information S1). These findings are not surprising, as theMSEratio
has proven to be a simple yet effective diagnostic of convection on global
scales (Noyelle et al., 2023; Y. Zhang & Boos, 2023), and was one of the most
important CG lightning predictors in Kalashnikov et al. (2024). Overall in-
creases in the MSEratio in these areas are driven by faster T2M warming
compared to T500 (the level of the free troposphere in theMSEratio calculation)
and commensurate increases in Q2M of up to 1 g kg

− 1 over the northern WUS
(Figure S3 in Supporting Information S1). Similarly, increases in Γ700–500
result from a faster warming of T700 relative to T500 (Figures S3a–S3b in
Supporting Information S1). Such changes are consistent with a warming
climate, as lower tropospheric warming can outpace the mid‐ and upper‐
troposphere due to land‐atmosphere feedbacks (Seneviratne et al., 2010).
Notably, increases in Γ700–500 and RH500 are amplified during July–August,
with increases of up to 0.4°C in Γ700–500 and 5% in RH500 across the interior
Northwest and western Great Basin (Figures S5f, S5g, S5j, and S5k in Sup-
porting Information S1).

Projected changes in these predictors can be explained by a combination of
dynamic and thermodynamic factors. Overall increases in MSEratio are
associated with a warming climate, including stronger near‐surface warming
and an atmosphere capable of holding more water vapor due to Clausius–
Clapeyron scaling. The amplified increases in MSEratio and RH500 across
the western and northern WUS, along with weaker increases and even de-
creases (e.g., in RH500 during July–August; Figures S5f and S5g in Sup-

porting Information S1) in parts of the interior Southwest are likely driven by changes in the strength and extent of
the NAM upper‐level anticyclone (Figure 6). The mean position of this high‐pressure system, typically anchored
over the “Four Corners” region of the interior Southwest (Figure 8a) (Adams & Comrie, 1997; Carleton, 1987),
will largely remain centered over this region but experiences a notable expansion and amplification further
northwest in CESM2 (Figures 6b and 6c). This is especially apparent in July–August, which represents the

Figure 4. Ensemble‐mean projected changes in the fraction of CG lightning
days that are also LIW‐risk days (“LIW‐risk fraction”) during June–
September between historical (1995–2022) and mid‐century (2031–2060).
The change represents the arithmetic difference between the fractions in the
two periods. Plus signs (dots) indicate where >75% of ensemble members
agree on increases (decreases) in the fraction.

Figure 5. Ensemble‐mean projected changes in CG lightning predictor variables: (a) MSEratio, (b) RH500, and (c) Γ700–500
between historical (1995–2022) and mid‐century (2031–2060) during June‐September. Plus signs (dots) indicate where
>75% of ensemble members agree on increases (decreases).
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climatological peak of the NAM (Barlow et al., 1998), with Z500 increases exceeding 45 m in parts of the interior
Northwest that substantially outpace geopotential height increases further south (Figures S6j and S6k in Sup-
porting Information S1) similar to prior studies (e.g., Pascale et al., 2018). As a result, notable dynamical changes
to the summertime large‐scale WUS circulation are projected in CESM2. Mid‐tropospheric monsoonal moisture
transport on the western side of the NAM anticyclone appears to shift further north and west, increasingly
affecting the interior Northwest and western Great Basin as reflected by increased RH500 (Figure 5b), with
resultant increases in both CG lightning and precipitation (Figures 2a and 3c). This is corroborated by weakening
westerlies, quantified by WS500, by up to 1 m s− 1 over the WUS during the warm season (Figure 6c). Conse-
quently, “ridge breakdown” patterns that are favorable for widespread dry lightning outbreaks (see Methods) are
projected to decrease in the northern WUS, likely due to fewer mid‐latitude disturbances transiting the region
(Figure 6d) (Brewer & Mass, 2016). A possible implication of our findings is that areas of the northern Great
Basin and interior Northwest may transition to a more monsoonal thunderstorm regime, with more frequent
airmass thunderstorms and accompanying precipitation under increased moisture advection. Although this could
signal a reduced risk of large, simultaneous LIW outbreaks, the overall risk of sustained LIW ignition and spread
is expected to rise due to increasing background temperatures, FWI, and CG lightning occurrence.

Figure 6. CESM2 ensemble‐mean averages of Z500 and WS500 on all warm‐season days during (a) 1995–2022 and (b) 2031–
2060, and (c) ensemble‐mean changes in these quantities between the two periods. (d) Ensemble‐mean change in the
frequency of ridge breakdown events, defined at each grid cell as >1σ positive Z500 anomalies that are followed by <0.5σ
negative anomalies within 3 days. Dots indicate where >75% of ensemble members agree on decreases.
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4. Discussion and Conclusions
CNN‐based projections show widespread, robust increases in CG lightning days across the northern WUS during
the warm season by the mid‐21st century of up to 8.9 days in the Middle Rockies, while the southern WUS shows
weak and non‐robust increases and some decreases (Figures 2a and 2c). LIW‐risk days are projected to robustly
increase nearly everywhere, with the strongest increases in the Southern Rockies (+3.4 days) and Middle Rockies
(+3.0 days) (Figures 2b and 2c). Areas in Utah and Arizona may still experience substantially more LIW‐risk
days due to increased FWI, even with minimal changes to CG lightning days. Approximately 92% of the
WUS is expected to experience an increase in the LIW‐risk fraction, or the ratio of LIW‐risk days to all CG
lightning days, driven by increased FWI (Figure 4). These findings highlight the heightened risk of LIWs due to
concurrent increases in CG lightning and fire weather conditions, though uncertainties remain regarding future
trajectories of CG lightning days in the NAM core. Such changes could pose challenges for the future man-
agement and suppression of LIWs, as more ignitions might be expected.

Our manuscript makes several novel contributions. To our knowledge, this work represents the first time that
localized parameterizations have been applied to project CG lightning and LIW risk over the WUS. This region is
prone to both deep convection in the NAM core and instances of dry lightning on the NAMperiphery, which occur
in conjunction with differing atmospheric conditions. These nuances may not be captured by parameterizations
developed at national to global scales, necessitating our localized approach. Our results demonstrate the value of
including FWI projections in future lightning assessments in contrast to prior studies, as the FWI provides context
to changes in LIW risk beyond CG lightning projections alone. The inclusion of FWI results in some areas seeing
increases in LIW‐risk days that outpace projected increases in CG lightning days (e.g., interior Southwest), while in
others, it tempers the projections of LIW risk that might be expected from increases in CG lightning in isolation
(e.g., northern Great Basin). Our projections offer a new level of detail in understanding changes to near‐term CG
lightning andLIW‐risk days over theWUSand can informpresent‐day policy decisions and adaptation planning. In
contrast, prior studies have typically made projections using global parameterizations and for the end of the 21st
century with sometimes contradictory results, leaving uncertainty in anticipated near‐term trajectories of lightning
and associated hazards for theWUS. For example, using global convective parameterizations, Finney et al. (2018)
and Janssen et al. (2023) projected increases in total lightning (CG and in‐cloud) flash rates across theWUS as part
of their broader analyses, but showed different spatial patterns of changes across the region. Pérez‐Invernón
et al. (2023), also using a convective parameterization, projectedwidespread increases in total and CG lightning, as
well as LIW risk factors, but their projectionswere limited to 2091–2095.Meanwhile, Etten‐Bohmet al. (2024) and
Whaley et al. (2024), using a lightning parameterization developed from the large‐scale environment over the
global tropics and subtropics, projected weak to no increases in total lightning occurrence over the WUS. Our
findings using local‐scale, machine learning‐based parameterizations applied to a large ensemble climate model
emphasize that future increases in lightning occurrence are likely over the WUS, are robust to internal climate
variability over the northern half of the domain, and imminent in the next few decades (2031–2060) and that LIW
risk will increase ubiquitously across the domain due to increasing FWI.

We have also analyzed projections of the meteorological predictor variables and large‐scale circulation patterns to
understand the drivers behind future CG lightning increases. MSEratio and RH500 are projected to increase
robustly across much of the WUS, while Γ700–500 increases are mainly concentrated in the northern WUS
(Figure 5). The areas of largest increases in all three predictors match the areas of largest CG lightning increases,
particularly in the northern and western WUS, with these increases peaking in July–August. This is likely due to
warming‐driven thermodynamics such as stronger near‐surface heating, amplified by circulation changes like the
expansion and northwestward shift of the NAM upper‐level anticyclone (Figure 6). These shifts affect moisture
transport reflected in increased RH500 across the interior Northwest and western Great Basin, leading to increased
CG lightning days but also precipitation (Figure 3c). In these areas, the largest increase in risk may not be from
LIW ignitions but rather hydrologic hazards such as flash flooding and slope failure from heavy rain‐producing
thunderstorms, particularly if affecting recently burned slopes (Touma et al., 2022).

We acknowledge several potential limitations to our analysis. First, we make projections of CG lightning days
(≥1 CG flash) rather than total quantity of CG lightning flashes, and we do so at a relatively coarse 1° × 1° spatial
resolution. We therefore are unable to evaluate changes to lightning flash quantity on daily to seasonal scales,
which could affect LIW ignition potential (e.g., Chen & Jin, 2022; Vant‐Hull & Koshak, 2023) or examine finer‐
scale spatial changes which may have important implications in the mountainous WUS terrain (Kalashnikov,

Earth's Future 10.1029/2025EF006108

KALASHNIKOV ET AL. 11 of 15

 23284277, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025E

F006108, W
iley O

nline L
ibrary on [10/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Abatzoglou, et al., 2022). Second, we note biases between CNN‐based parameterizations and observations
(Figure 1) which we mitigate by assessing changes to CG lightning occurrence in the CESM2 model space,
assuming similar mean biases exist in historical and future simulations. Third, our analysis is limited to one GCM
with relatively high climate sensitivity and emission scenario (SSP3‐7.0); we therefore constrain our projections
to the mid‐21st century when CESM2 global mean temperatures do not yet diverge substantially from other
climate models and future emission scenarios (Fan et al., 2020; Gettelman et al., 2019; Meehl, Arblaster,
et al., 2020). A comparison of modeled changes frommultiple GCMs and greenhouse gas trajectories is needed to
evaluate uncertainties in projections arising from structural differences among models and emissions scenarios.
Nonetheless, we leverage the CESM2 large ensemble to account for projection uncertainty due to internal climate
variability, which can be relatively large on regional‐to‐local scales and in the near‐term for certain variables
compared to model or scenario uncertainties (Lehner & Deser, 2023). Finally, the median FWI values used to
define LIW risk herein are broadly representative within ecoprovinces but do not account for localized vegetation
conditions that may alter the likelihood of CG lightning starting a wildfire. By adopting this approach, we provide
projections of days conducive to LIW ignition without explicitly modeling fires themselves. Overall, our results
suggest a convergence of CG lightning and fire‐conducive weather in a warming climate that will broadly in-
crease LIW risk across the WUS. Our findings can be used to assess the changing risks of thunderstorm hazards,
including LIW ignitions, and inform proactive adaptation strategies.

Data Availability Statement
NLDN data are sourced from the National Centers for Environmental Information SevereWeather Data Inventory
(https://www.ncei.noaa.gov/pub/data/swdi/database‐csv/v2/). MERRA‐2 data were acquired from NASA's
Goddard Earth Sciences Data Information Services Center (GES DISC): https://disc.gsfc.nasa.gov/datasets?
keywords=merra‐2&page=1. GLDAS data were obtained from NASA's Land Data Assimilation System (data
set: GLDASp5_domveg_VIC4.1.2_10d.nc4): https://ldas.gsfc.nasa.gov/gldas/vegetation‐class‐mask. CESM2‐
LENS2 data are publicly available for download from https://www.cesm.ucar.edu/community‐projects/lens2/
data‐sets. Ecoprovince polygons were sourced from the US Geological Survey (https://www.sciencebase.gov/
catalog/item/54244abde4b037b608f9e23d). Data sets used to perform analyses are available at the following
Zenodo repository: https://doi.org/10.5281/zenodo.10685571 (Kalashnikov, 2024). Analysis code can be
accessed at the following Zenodo repository: https://doi.org/10.5281/zenodo.14822736 (Kalashnikov, 2025).
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