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Abstract Seasonal changes in the climatic potential for very large wildfires (VLWF>
50,000 ac~20,234 ha) across the western contiguous United States are projected over the
21st century using generalized linear models and downscaled climate projections for two
representative concentration pathways (RCPs). Significant (p<0.05) increases in VLWF
probability for climate of the mid-21st century (2031-2060) relative to contemporary climate
are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin,
Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest. Changes in season-
ality and frequency of VLWFs d7epend on changes in the future climate space. For example,
flammability-limited areas such as the Pacific Northwest show that (with high model agree-
ment) the frequency of weeks with VLWFs in a given year is 2-2.7 more likely. However,
frequency of weeks with at least one VLWF in fuel-limited systems like the Western Great
Basin is 1.3 times more likely (with low model agreement). Thus, areas where fire is directly
associated with hot and dry climate, as opposed to experiencing lagged effects from previous
years, experience more change in the likelihood of VLWF in future projections. The results
provide a quantitative foundation for management to mitigate the effects of VLWFs.

1 Introduction

As the climate warms, we expect increases in lightning ignition (Price and Rind 1994), area
burned (Flannigan et al. 2009, Littell et al. 2010), fire intensity (Flannigan et al. 1998, Liu et al.
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2013), and fire severity (Flannigan et al. 2013). Wildfires can have substantial ecological,
social, and economic effects. However, the many studies that project annual averages of area
burned in an enhanced greenhouse climate (McKenzie et al. 2004, Flannigan et al. 2005,
Flannigan et al. 2009, Littell et al. 2010, Westerling et al. 2011) or the potential for fire
occurrence (Parisien et al. 2012), do not capture fire-climate relationships at a temporal
resolution suitable for predicting individual fires. Predicting the likelihood of individual fires
can provide key information necessary for facilitating fire management in mitigating the
effects of wildfire. Ecological, social, and economic effects of wildfires include ecosystem
effects, property loss, especially along the wildland urban interface (WUI), loss of natural
resources, significant degradation of air quality (Jaffe et al. 2008), suppression expenditures
(Calkin et al. 2005), and loss of human life. Also, wildfires are a part of a feedback loop
between climate, wildfire, and air quality as they produce carbon emissions and aerosols that
contribute to global warming (Bond et al. 2013).

Although there are numerous metrics for examining climate-wildfire relationships, most
studies have examined annual burned area, which is relatively easy to quantify and often yields
strong correlative relationships with climate (Flannigan et al. 2005, Littell et al. 2009,
Abatzoglou and Kolden 2013). However, aggregate annual area burned correlations have
been shown to be largely influenced by very large wildfires (Stavros et al. 2014). These very
large wildland fires (VLWFs) can cause significant damage disproportionate to their area, and
are defined in this analysis as wildfires>50,000 acres~20,234 ha, constituting the top two
percent of wildfire sizes in the western contiguous US making them the most “extreme” of fire
sizes.

Understanding the potential for future VLWFs is important for both planning and mitiga-
tion. VLWFs may be unavoidable, but modeling of VLWF can help identify spatial and
seasonal patterns of increased VLWF potential, thereby mitigating risk, enhancing opportuni-
ties for management, and developing policy using both direct and indirect strategies. Direct
strategies include fuel management, which has successfully reduced economic, social, and
environmental damages (Williams 2013). Another direct strategy is fire suppression of smaller
fires that might become VLWFs when the likelihood is very high (Podur and Wotton 2011,
Tedim et al. 2013) and when suppression resources are available. Indirect strategies to mitigate
the smoke and air pollution effects of VLWFs include, for example, reducing anthropogenic
emissions (e.g., fossil fuels), so that when there is a wildfire, more emissions must occur before
exceeding air-quality standards (Bedsworth 2011).

For this study, we examine three fundamental questions about the future likelihood of
VLWF occurrence at scales appropriate for management and policy across the western United
States using models developed by Stavros et al. (2014). First, will VLWFs be more likely in
the future? Second, will seasons of increased likelihood of VLWF change lengthen in the
future? Third, how will key climate predictors of VLWF change in the future?

2 Data and methods

2.1 Study area

The analysis uses regional divisions in the western contiguous United States based on existing
operational decision-making and regional forecasting in fire and air-quality management.
Regions are defined by the firefighting command centers, Geographic Area Coordination

Centers (GACC), run by the U.S. National Interagency Fire Center (acquired 1 Oct 2011 from
http://psgeodata.fs.fed.us/download.html/GACC_2009.zip). There are eight GACCs in the
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study area: Southern California (SCAL), Northern California (NCAL), Pacific Northwest
(PNW), Northern Rockies (NROCK), Rocky Mountains (RM), Western Great Basin (WGB)
, Eastern Great Basin (EGB), and Southwest (SW).

Across these GACCs are two main fire regimes: fuel-limited and flammability-limited.
Fuel-limited fire regimes typically need a wet period in the year preceding fire occurrence to
increase fuel connectivity and facilitate fire spread (Veblen et al. 2000). On the other hand,
flammability-limited fire regimes have enough fuel to burn under the conditions that promote
combustion (Littell et al. 2009). Although all GACCs have finer-scale variable creating
mosaics of fuel and flammability limited regimes largely dependent on the variation in
dominant ecosystems (Littell et al., 2009), generally PNW is a flammability-limited system
and WGB is fuel-limited (Stavros et al. 2014). The SW has finer scale variability, but is unlike
the other GACCs with mixed fire regimes in that the likelihood of VLWF dramatically falls
with the onset of the Southwest monsoon (Stavros et al., in press).

2.2 Climate data

The study uses observed climate data over 1979-2010 and modeled climate data from 14
Global Climate Models (GCMs) over 1950-2099 with future projections of representative
concentration pathways (RCPs) beginning in 2006. Observed climate data from 1979-2010
come from two gridded data sets: (1) 800-m monthly temperature and precipitation from
Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly et al. 2008),
and (2) 4-km daily surface meteorology from Abatzoglou (2013).

Climate predictions have three sources of uncertainty: model uncertainty, scenario uncer-
tainty, and internal variability (Hawkins and Sutton 2009). To address model uncertainty, this
analysis uses 14 global climate models (GCMs, Table 1) and to address scenario uncertainty,
this analysis uses two RCPs 4.5 and 8.5. RCPs are back-engineered from cumulative radiative
forcing in 2,100, in watts per square meter (van Vuuren et al. 2011). In RCP 4.5, total radiative
forcing is stabilized before 2,100. In RCP 8.5, greenhouse gas emissions continue to increase
through the 21st century. Daily output from these climate models was downscaled using the
Multivariate Adaptive Constructed Analogs method (Abatzoglou and Brown, 2012) using the
observational datasets across the geographic domain. Downscaled outputs included daily
maximum and minimum temperature and relative humidity, accumulated precipitation, daily
averaged wind speed and downward shortwave radiation at the surface for model years 1950—
2,100.

From the gridded climate datasets, the Palmer Drought Severity Index (PDSI, Kangas and
Brown 2007) and six indices from the United States National Fire Danger Rating System
(NFDRS, using fuel model G) and the Canadian Forest Fire Danger Rating System (CFFDRS)
were calculated (Abatzoglou and Kolden 2013). Indices from NFDRS include the moisture
content of fuels 2.5-7.6 cm in diameter (100-h fuel moisture- FM100), the moisture content of
fuels 7.6-15.2 cm in diameter (1,000-h fuel moisture- FM1000), how hot a fire could burn
(energy release component- ERC), and the potential difficulty of controlling a fire as a function
of spread rate and ERC (burning index- BI). Indices from CFFDRS include the relative ease of
ignition and flammability of fine fuels (fine fuel moisture content- FFMC), and the average
moisture of loosely compacted organic layers (duff moisture code- DMC). For all indices but
FM100 and FM 1000, the higher the index value, the higher the fire danger.

Bias correction ensured that the statistical distributions for individual variables (e.g., daily
precipitation, temperature) over the modeled historical period (1950-2005) are mapped to those of
the observed record (1979-2010). However, bias correction is applied independently across
variables thus potentially resulting in multi-dimensional biases across variables (e.g., temperature
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Table 1 The 14 GCMs used in this analysis, listed in descending order of most to least total relative error as a
sum of relative errors from many metrics over the PNW as calculated by Rupp et al. (2013)

GCM Reference

CNRM-CM5 Voldoire et al. 2013

GFDL-ESM2M http://www.gfdl.noaa.gov/earth-system-model

CanESM2 http://www.atmos-chem-phys-discuss.net/11/22893/2011/acpd-11-22893-2011.pdf
MIROCS5 Watanabe et al. 2010

HadGEM2-ES Martin et al. 2011

GFDL-ESM2G http://www.gfdl.noaa.gov/earth-system-model
HadGEM2-CC Martin et al. 2011

CSIRO-MK3-6-0 Collier et al. 2011

inmem4 Volodin et al. 2010

MIROC-ESM Watanabe et al. 2011

MIROC-ESM CHEM Watanabe et al. 2011

bee-csm 1-1

MRI-CGCM3 Yukimoto et al. 2012

BNU-ESM http://esg.bnu.edu.cn/BNU_ESM_webs/htmls/data_acc.html

and precipitation) originating from GCM biases. Likewise, GCM biases in serial correlation (e.g.,
sequences of dry days) are not corrected for in typical bias correction routines. Collectively, these
uncorrected biases manifest in metrics that integrate across variables and time such as PDSI and
fire danger indices resulting in apparent differences between historical modeled data and observed
data. To overcome some of these limitations we perform a secondary bias correction of all variables
using a non-parametric quantile mapping transformation (Michelangeli et al. 2009) that matches
quantiles of modeled data over the historical forcing period to the observational record. The same
transformation was applied to indices calculated from future-climate projections with the assump-
tion that any biases are stationary in time, thereby ensuring unbiased estimation of the differences
between the projections and historical model runs. We note however, that the secondary bias
correction eliminates multi-dimensional biases across predictor variables (e.g., PDSI and ERC,
supplementary online material (SOM Table 1).

2.3 Data analysis

To investigate the three questions posed for this analysis, we used existing VLWF models built
by Stavros et al. (2014) (see Table 2), defined per GACC, and projected the probability that in a
given week, a VLWF will occur, onto future climate space. VLWF models were developed by
defining explanatory variables as the average fire danger index value for the weeks before and
after fire discovery, as defined in the Monitoring Trends in Burn Severity (MTBS) database.
Comparing fire danger indices for large fires and VLWFs in the weeks before and after the
discovery of fire showed windows of unmanageable fire growth. These windows defined the
temporal window (s) for explanatory variables used in generalized linear models (GLMs) of the
binomial family. Model selection was based on minimizing the Akaike Information Criterion
(AIC). MTBS is a database of fire perimeters with burn severity and data of discovery for fires
>1,000 ac~404 ha covering the contiguous United States 19842010, fires in the Great Plains
were excluded from model development to focus on wildfires rather than agricultural fires.
Models were assessed using Area Under the [receiver operating characteristic] Curve (AUC,
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Table 2 Models by GACC to calculate the probability of VLWF event. Models taken fromStavros et al. (2014).
AUC represents the Area Under the [receiver operating characteristic] Curve, a metric of model sensitivity to
false positives whereby a value of 0.5 is totally random prediction and a value of 1 is a perfect prediction. Note:
Explanatory variables are denoted as the calculated index averaged over the suffix such that “.1” denotes the
week prior to discovery, “.0” is the discovery week, and “.n#” is the number of weeks post discovery week.
PDSI=Palmer drought severity index, TEMP=mean temperature, FFMC=fine fuel moisture code, DMC=duff
moisture code, FM100=100-h. fuel moisture, FM1,000=1000-h. fuel moisture, ERC=energy release compo-
nent, and BI=Burning Index

GACC P (VLWF)=1/(1+¢"b) where b = Classification threshold AUC

EGB 31.033-0.226*FFMC.0-0.260*TEMP.0-0.015*DMC.n3— 0.225 0.84
0.238*PDSLnl

NCAL —8.500+1.290*FM1000.n1 0.125 0.86

NROCK  —13.951-0.309*B1.n3+0.672*FM100.0+0.334*FFMC.n1 + 0.275 0.93
0.026*DMC.0-0.366*TEMP.1

PNW 6.664-0.514*TEMP.n1+0.468*FM1000.n1 0.175 0.86

RM 11.930-0.057*DMC.n3 0.200 0.97

SCAL 18.660-0.193*ERC.n1 0.125 0.80

SW 8.430-0.017*DMC.0 0.125 0.92

WGB —4.532+1.279*FM100.0-0.392*PDSIL.0 0.225 0.86

Table 2), precision, and recall (He and Garcia 2009). AUC is a metric of model accuracy
averaged over all possible classification thresholds (0,1), precision is a measure of prediction
exactness (i.e. number of predicted VLWFs that are actually VLWFs), and recall is a measure of
prediction completeness (i.e., number of VLWFs of all predicted VLWFs). Using three different
thresholds to define VLWF showed model selection to be insensitive to a wide range of
thresholds for VLWFs, suggesting the robustness of our threshold of 20,234 ha.

The observed (1979-2010) likelihoods of VLWF were compared to both the modeled historical
(1950-2005) and future (2006-2099) likelihoods of VLWF using both time series of the normal-
ized probability of VLWF defined as the proportional change in probabilities from the baseline
mean and Welch’s t-tests. For each RCP ensemble from 1950 to 2099 and for the observed 1979 to
2010, we used 5-year moving averages, each divided by the mean of the observed record, to
determine the normalized probability. Because the probabilities of these rare events are low by
definition, results were normalized to simplify comparison of current and future changes in the
likelihood of VLWF. Normalized probabilities for 2031-2060 were compared for individual
GCMs and the multi-model mean to the historical modeled (1950-2005) normalized probability
using Welch’s pairwise #-test assuming unequal variances. We chose 20312060 to capture
differences between a radiative forcing of 4.5 and 8.5 Wm 2. Although the differences between
RCP4.5 and RCP8.5 become more acute in the latter half of the 21st century, vegetation shifts and
their feedback to fire climatology might change the climate-VLWEF associations used to build the
models in this analysis (McKenzie and Littell 2011). Nevertheless, time series were extended to
2,100 to capture the full potential difference in probability of a VLWF between RCP scenarios.

Two other analyses included (1) changes in the timing and duration of VLWF seasons and (2)
the spatial distribution of the change in climate space from the observed record to the future. First,
we examined seasonality by plotting the probability of a VLWF against week of year, and testing,
using Welch’s #-test, the difference in mean VLWF season start week, end week, and length of the
observed, historical modeled, and future scenarios. The mean is defined as the average (e.g., start
week) over the record for each year for each model. A week is classified as a VLWF week if the
probability for that week exceeds the threshold for classifying a VLWEF, which is defined as the
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intersection of model evaluation statistics precision and recall (Table 2, Stavros et al. 2014). Thus,
“start week” and “end week” are defined as the first and last VLWF week of the season. Notably,
the observed baseline coincides with the last phase of negative PDO, however the difference in
mean temperature between the modeled over the observed record and historical modeled from
1950 to 2005, by which future scenarios were compared, is an order of magnitude less than the
differences modeled for the future (SOM Table 2), thus changes in probability VLWF are not
merely a result of natural variation associated with PDO. Second, we examined projected changes
in climatic and fire-danger extremes across the domain from the baseline conditions (1950-2005)
to the more conservative future RCP 4.5 scenario for 2031-2060. Because VLWF have a proclivity
for occurring during extreme conditions, we examined changes in the frequency of ERC, BI,
FFMC, DMC and Temperature exceeding the historical observed top decile from June to August
and below the historical bottom decile for PDSI, FM100, and FM1000. We qualify regions where
at least 10 of the 14 models agree on the sign of change.

3 Results
3.1 Projected changes in VLWF probability

The baseline period from 1950 to 2005 showed no significant (x=0.05) difference between the
historical modeled ensemble and the observed probabilities in any GACC except WGB. These
results were not only true for ensembles, but also most models (>12 of 14) tested indepen-
dently, thus providing high confidence in these findings. Despite bias correction on biophysical
metrics used to develop the explanatory variables used in the VLWF probability models, the
difference between the observed and modeled in WGB show that the models are slightly over-
predicting VLWF probabilities.

The normalized mean probabilities for the future (2031-2060) is significantly different (x=
0.05) from the historical normalized probability of the modeled mean for all GACCs. In all but
the SW, means increased from the historical modeled probabilities to RCP 4.5 (2031-2060)
and then to RCP 8.5. However, for all GACCs, the likelihood of VLWF is greater under RCP
8.5 than RCP 4.5 by the end of the century. For all GACCs, there is strong model agreement
(=11 of 14 GCMs) that significant differences exist between future scenarios and the historical
observed. Although all GACCs show significant increases over the 21st century for both RCPs
(Fig. 1), four of the eight GACCs, EGB PNW, RM, and SW, show at least a 200 % increase in
probability of a VLWF (SOM Table 1). These four GACCs have large inter-model variability
in the normalized probability of VLWF.

There is variation in how the probability of VLWF will change by GACC, but in general
there is a statistically significant increase in the frequency of VLWF weeks (defined in
Section 2.3) for the future than from the baseline (Fig. 2 and SOM Table 1) except under
RCP 4.5 in NCAL and NROCK.

3.2 Seasonal changes in VLWF potential

Both quantitative and qualitative assessments of the probability of VLWF show changes in fire
season specifically for VLWFs and for the “vulnerable fire season”. We define vulnerable fire
season as an increase in the future probability for a given week of year from the baseline
(Fig. 2), but not necessarily exceeding the threshold for classifying a VLWF week. The VLWF
fire season is defined by the first and last VLWF week in a year, means of all years from all
GCMs are shown in SOM Table 1. SOM Table 1 provides a quantitative assessment of how
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Fig. 1 Proportional change (from observed) of the probability that in a given week a VLWEF will occur. The plots
show a 5-year moving average. Dashed vertical lines mark the transition from modeled values over the observed
period (1979-2010) to those for the future (2011-2099). Each shaded line denotes one of 14 GCMs used, and the
bold line denotes the ensemble mean of all 14 models

the frequency of VLWF weeks and the VLWF fire season change under different future
scenarios. In general the fire season start week is significantly (x<0.05) different and advances
relative to the historical baseline with the exception of NROCK and SW under RCP 4.5, and
RM and SCAL under both scenarios. The fire season end week is significantly later than the
baseline in all GACCs except NROCK and RM under RCP 4.5 and under either scenario for
WGB. These differences in start and end week for the fire season show all GACCs have
VLWEF fire seasons significantly different from the baseline. SOM Table 1 also shows an
increase in the number of weeks classified with at least one VLWF occurring. In further
agreement, Fig. 2 provides a qualitative confirmation that the vulnerable fire season will
change across time for each GACC. Generally, the probability of VLWF increases under
RCP 4.5 and is even more pronounced under RCP 8.5 than from the baseline. NCAL, as the
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Fig. 2 The seasonality of P (VLWF) from 1979-2099. The historical modeled ensemble is used for 1979 to
2010. The ensemble mean of thel4 GCMs is used for scenarios RCP 4.5 and RCP 8.5 from 2011 to 2099

exception, shows no indication under either RCP 4.5 or RCP 8.5 that the vulnerable fire season
length or probability of VLWF will change.

3.3 Changes in the climate space

We examined spatial patterns of the change in frequency of extreme conditions as these are
thought to increase the chance of an extreme event like VLWEF. Generally, the frequency of days
or months classified as having extreme climate (i.e., exceeding the decile threshold classified as
“extreme” from 1979-2010 to 20312060 (Fig. 3)), especially with respect to high temperature
and drought, will increase. There are areas, however, where more than three of the 14 GCMs
disagree on such increases, particularly for: 1) BI in PNW, NCAL, NROCK, EGB, and RM, 2)
FM1000 in EGB and RM, and 3) DMC for SCAL, WGB and EGB. GCMs predictions for
temperature are more robust than for wind and relative humidity, consequently biophysical
metrics that most linearly relate to temperature (e.g., FFMC and PDSI) have better model
agreement than biophysical variables with more complicated derivations (BI, ERC, DMC,
FM100, and FM1000).
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( Bl, ERC, DMC, FFMC, FM )

+0% +50% +100%

PDSI
+50% +120% +230%

Temperature

_ +600% +700% +850% )

Fig. 3 Projected changes, under RCP 4.5, in the number of days or months that exceed the threshold defined by
the upper/lower decile of days or months from 19792010 to 20312060 for each index. Changes are expressed
as a percentage change from baseline conditions (e.g., +100 means a doubling). Regions where the signal is not
robust, i.e. regions of high uncertainty across models, areas with <I1 of 14 model agreement are gray. For ease,
examining the spatial distribution of changes in FM100 and FM1,000 used inverted categorized color spectrums.
FM100 and FM1000 decrease with increased fire danger, in contrast to all other variables, which increase with
increased fire danger. Therefore, the color spectrums used for spatial investigation of the changes in climate space
represent the same for all indices such that red denotes increased fire danger. Note: PDSI=Palmer drought
severity index, TEMP=mean temperature, FFMC=fine fuel moisture code, DMC=duff moisture code, FM100=
100-h. fuel moisture, FM1000=1000-h. fuel moisture, ERC=energy release component, and BI=Buming index

4 Discussion

4.1 Long-term trends and seasonal change

Understanding the effect of climate on the occurrence of VLWFs specifically, rather than
annual-scale projections of area burned, provides insight into how the timing and seasonality
of these events may change. All GACCs show an increase in the probability (Fig. 2) of

VLWFs, and a significant («=0.05) increase in their frequency (SOM Table 1), from the
historical modeled (1950-2005) to the future (2031-2060) under RCP 4.5 and even more so

@ Springer



464 Climatic Change (2014) 126:455-468

under RCP 8.5. Periodic fluctuations in climate are reflected in the changing probability of a
VLWE, although attributing probabilities to specific future years would constitute false
precision that ignores the stochastic nature of climatic variability. Mapping the normalized
probability of a VLWF across 14 GCMs (Fig. 1) shows the range of variability among GCMs.
GACCs with the most inter-model variability of projected proportional change, PNW and RM,
not only have the most models that agree that VLWFs will be more likely in the future, but also
that the proportional change in probability of VLWF is the largest among GACCs.

A unique feature of this study is that it specifically projects the likelihood of VLWFs rather
than fire-danger indices separate from their relationship to actual events (Liu et al. 2013), the
less informative simple likelihood of a fire start (Preisler and Westerling 2007, Krawchuk et al.
2009, Parisien et al. 2012), or the aggregate statistic of annual area burned (Flannigan et al.
2005, Littell et al. 2009, Abatzoglou and Kolden 2013). Because VLWFs, defined in this study
as the top two percent of fire sizes over the observed record (1984-2010), influence aggregate
statistical relationships such as that between climate and annual area burned (Stavros et al.
2014), it is necessary to asses the seasonality of these events. The models used in this study
enable more timely anticipation of rare VLWF events and show that not only can we project
future increases in the probability of VLWF, but also longer VLWF seasons and vulnerable fire
seasons.

By examining projected changes in key extremes that coincide with historical VLWF
occurrence, we better explain regional variations in projected changes in VLWF probability.
Generally, all GACCs project at least a 30 % increase in the mean normalized probability of a
VLWF (SOM Table 1) and are expected to have more days and months with “extreme”
conditions (i.e., high fire danger or low fuel moisture) than the observed period (Fig. 3).
Understanding the influence of key predictors (Table 2) on changes in the probability of
VLWF (SOM Table 1) is not straight forward (Stavros et al. 2014), but examining all indices of
the climate space provides a broader foundation from which to develop hypotheses for further
investigation. For example, areas that show the most increase in normalized probability of
VLWE, the PNW, are flammability-limited (Littell et al., 2009; Stavros et al. 2014). Fire in
these areas is directly associated with hot and dry weather, so it follows logically that as the
climatic extremes of hot and dry become more likely in these areas, there will also be more
fire.

On the other hand, areas that are fuel-limited, such as non-forested parts of SCAL and
NCAL, and most of WGB (Littell et al., 2009; Abatzoglou & Kolden, 2013; Stavros et al.
2014) may experience reduced fuel abundance as warmer climate reduces the productivity of
water-limited vegetation (McKenzie and Littell 2011) thus affecting fuel connectivity (Littell
et al. 2009, Stavros et al. 2014), reducing area prone to fire (Krawchuk et al. 2009, Batllori
et al. 2013) and possibly even the likelihood of VLWF. Consequently the likelihood of VLWF
in these systems may not increase as much as in flammability-limited systems with a warming
climate.

Our projections of longer seasons of high fire potential are similar to those from other
studies (Liu et al. 2013). Because fire regimes are variable within GACCs, further investiga-
tion at finer spatial resolution is necessary to confirm or refine our understanding of the
sensitivity of projected probabilities to the climate space, and to identify within-GACC
heterogeneity in fire climatology.

4.2 Projection considerations

There are three limitations to our projections including (1) complications projecting down-
scaled biophysical variables, (2) non-stationarity in relationships used to develop VLWF
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models, and (3) lack of consideration in human impact on the occurrence of VLWF. First,
biophysical variables provide may better correlations for fire potential than do meteorological
variables like temperature and precipitation (Abatzoglou and Kolden 2013), but they require
integrating variables over an extended time period. Temporal autocorrelation and inter-model
biases in the simulation of meteorological variables may limit the direct application of
downscaled data to future projections and exist even after downscaling and bias correction.
Biases in modeled VLWF probabilities in the historic runs are likely a consequence of biases in
the joint probability of predictor variables for multivariate logistic models, however a second-
ary downscaling of integrated metrics significantly reduced modeled biases between the
historical model runs and observations for all GACCs except WGB (SOM Table 1). Further
investigation of persistent bias in WGB showed modeled PDSI values higher than the
observed, consequently models using PDSI may not accurately predict the probability of
VLWE. Although both EGB and WGB models use PDSI, EGB has four explanatory variables,
which may dampen the effect PDSI has on the final VLWF probability, thus explaining why
WGB is the only model that over-predicts VLWF probability from the observed record.

Second, model development assumes stationarity both in climate-vegetation relationships
and in the covariance structure used in statistical downscaling methods for climate data. The
response of vegetation and wildfire patterns to climate change is not simple. For example,
extreme environments are unsuitable for wildfire (Parisien and Moritz 2009), e.g., very hot and
dry climates that lack fuel connectivity to carry wildfire or cold and wet climates where fuels
are rarely flammable. Uncertainty exists about how vegetation, and the fire regimes it supports
(Abatzoglou and Kolden 2013), will change VLWF-climate correlations (McKenzie and Littell
2011), thus weakening or changing the predictors used to calculate the probability of VLWF.
Not only are VLWF-climate correlations subject to change in the future, but also statistical
downscaling methods used on the climate data are contingent on relationships between
stationarity in the covariance structure of coarse- to fine-scale patterns of climate. Changes
in land-surface feedback processes (e.g., snow-albedo feedback) may modify the local energy
budget and change the intrinsic covariance structure that was developed using observational
data, thereby violating stationarity and introducing additional uncertainty in our downscaling
approach. Such uncertainties are one motivation for using a multi-model approach rather than
relying on the results of a single or few model experiments.

Third, the models used in this analysis are not spatially explicit and only account for
climatic influence on the likelihood of VLWF, thus they exclude considerations of resource
allocation for suppression. Because much of the United States experienced nearly a century of
fire suppression, further analyses should distinguish climatic effects from those associated with
fire management and changes in land use.

5 Conclusions

Because VLWFs have lasting effects socially and environmentally, understanding future
changes can inform decision makers on how best to prepare for such events. This analysis,
the first of its kind over the western US, addresses key questions about how the likelihood of
rare VLWFs is projected to change both seasonally and over the 21st century. In general,
across the western US, the likelihood of a VLWF will increase over the long-term, in duration
of VLWF season, and in frequency of occurrence throughout the fire season. Areas with cooler
and wetter climate (i.c., flammability limited systems like PNW or mixed regimes like RM)
have higher increases in the likelihood of VLWF in the future than those with hotter and drier
climate.
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These results can be used to shape new fire policy, including fuel and air-quality manage-
ment. For example, areas with previous fuel treatments have reduced tree mortality, fire
behavior and spread rates, thereby proactively offsetting suppression costs, private property
loss, environmental damages, and fatalities from VLWFs (Williams 2013). This work also
informs air-quality policy because it matches the broad spatial extent but fine temporal
resolution of air-quality modeling frameworks, e.g. BlueSky (Larkin et al. 2009), given that
VLWFs are a principal cause of air-quality exceedances (Jaffe et al. 2008). Projections from
this study may be a useful baseline for policy and management, by identifying regions of
particular concern (i.e., where VLWFs are projected to increase greatly), and for future
research that considers finer-scale variability in environmental gradients, ecosystem types,
and large-fire potential.
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