
Ecological Modelling 477 (2023) 110277

Available online 11 January 2023
0304-3800/© 2022 The US Geological Survey. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

An aridity threshold model of fire sizes and annual area burned in 
extensively forested ecoregions of the western USA 

Paul D. Henne *, Todd J. Hawbaker 
U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver Federal Center, P.O. Box 25046, MS 980, Denver, CO 80225, United States   

A R T I C L E  I N F O   

Keywords: 
Climate change 
Extreme events 
Fire ecology 
Global climate models 
Rocky mountains 
Water deficit 

A B S T R A C T   

Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel 
structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive 
fire years at regional scales can enable development of area burned models that are both spatially and temporally 
robust, which is crucial for understanding the impacts of past and future climate change. We identified region- 
specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned 
for 11 extensively forested ecoregions in the western United States. We developed a new area burned model 
using these relationships and demonstrate its application in the Southern Rocky Mountains using climate pro-
jections from five global climate models (GCMs) that bracket the range of projected changes in aridity. We used 
the aridity thresholds to classify each simulation year as having limited, moderate, or extensive area burned and 
defined fire-size distributions from historical fire records for these categories. We simulated individual fires from 
a regression relating fire season aridity to the annual number of fires and drew fire sizes from the corresponding 
fire-size distributions. We project dramatic increases in area burned after 2020 under most GCMs and after 2060 
with all GCMs as the frequency of extensive fire years increases. Our adaptable model can readily incorporate 
new observations (e.g., extreme fire years) to directly address the non-stationarity of fire-climate relationships as 
climatic conditions diverge from past observations. Our aridity threshold fire model provides a simple yet 
spatially robust approach to project regional changes in area burned with broad applicability to ecosystem and 
vegetation simulation models.   

1. Introduction 

Fire is the dominant disturbance in many forested regions of the 
world, and many forest species possess adaptations to survive, or 
regenerate after, fire (Bond et al., 2005; Bowman et al., 2009). However, 
annual area burned increased dramatically in recent years in concert 
with rising regional temperatures, bringing record-breaking fire seasons 
to western North America, Siberia, and Australia in 2019/2020 alone, 
and prompting concern that observed and projected climatic changes 
will further increase fire activity (Collins et al., 2021; Higuera and 
Abatzoglou, 2021; Ponomarev et al., 2021). Such changes have 
well-documented societal and ecological consequences; extensive 
wildfires produce hazardous air, increase spending on fire management 
and emergency services, drive shifts in species abundances, and even 
trigger the replacement of forests with open and shrub-dominated eco-
systems (Bowman et al., 2017; Davis et al., 2019; Turner, 2010). 
Therefore, anticipating changes in fire frequency, fire size, and annual 

area burned is critical to understanding the societal and ecological risks 
posed by wildfire. 

Annual area burned is a key statistic used to track changes in wildfire 
activity through time and can be quantitatively linked to the climatic, 
ecological, and cultural factors that constrain fire regimes. Area burned 
increased in many ecosystems, not only during recent drought events, 
but also during warm, dry intervals of the past (Calder et al., 2015; 
Higuera et al., 2021; Marlon et al., 2012; Westerling et al., 2006), which 
demonstrates an enduring link between climate and fire activity. 
Climate has both long and short-term impacts on fire activity. On annual 
and longer timescales, climate constrains vegetation dynamics and 
therefore fuel availability (including fine fuels) and fuel connectivity. In 
the short term, climate controls fuel moisture, which decreases under 
dry conditions, increasing flammability, and fire spread. Changes in fuel 
moisture can be tracked using aridity indices, including water-balance 
or fire-danger metrics that synthesize the interactions among tempera-
ture, precipitation, and soil water (Littell et al., 2016). Although fuel 
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moisture is an important driver of annual variability in area burned, the 
specific climatic conditions that engender extensive fire years vary 
among ecosystems and vegetation types and are affected by disturbance 
and management histories (Littell et al., 2009; Westerling et al., 2003). 
Nonetheless, recent analyses demonstrated significant correlations be-
tween aridity indices and area burned at monthly to annual scales 
(Abatzoglou and Kolden, 2013; Williams et al., 2015). Furthermore, 
exponential increases in area burned have been reported in many 
forested regions when fire-season aridity exceeds a threshold (Henne 
et al., 2021; Pausas and Paula, 2012; Young et al., 2017). 

Fire models provide a means to understand the drivers of past vari-
ation in area burned and anticipate future change. Models operate at 
varying scales of area and complexity, with associated tradeoffs in re-
alism and computational intensity. Statistical and machine learning 
models relate one or more predictor variables to fire regime components 
at pixel, regional, and subcontinental scales (Jain et al., 2020; Xi et al., 
2019). Although input variables differ among models, those relying on 
aridity indices as a proxy for fuel moisture often show similar perfor-
mance as models that rely on multiple predictors (Higuera et al., 2015; 
Williams et al., 2015). Combined statistical models can simulate both 
ignition numbers and fire sizes (Westerling et al., 2011) that can be 
applied to, or integrated with, landscape vegetation models to investi-
gate wildfire impacts on vegetation dynamics. Although landscape 
models are often calibrated with historical fire return intervals or 
observed fire-size distributions (He and Mladenoff, 1999), ignition 
probabilities and fire-size distributions may also be related to climatic 
parameters to project climate-change impacts (Henne et al., 2021; Liang 
et al., 2017). More data-intensive approaches incorporate landscape- 
and fuel-specific data. For example, models that predict fire spread 
based on fuel characteristics and topography can use spatially explicit 
information to understand fire risks across landscapes (Finney et al., 
2011; Liu et al., 2015; Sleeter et al., 2015). While such models can apply 
empirical fire-behavior data, they can require extensive calibration, 
demand detailed information about fuel composition and condition over 
time, and may have unrealistic assumptions about fuel behavior when 
applied to novel settings. At regional to global scales, dynamic global 
vegetation models (DGVMs) use observed relationships among fuel 
moisture, fire season length, and burned area, or processed-based esti-
mations of fire ignition and spread (e.g., Thonicke et al., 2001; Li et al., 
2012). However, large differences exist among models in the represen-
tation of processes that constrain burned area, and additional model 
complexity does not necessarily improve model performance, which can 
vary regionally (Hantsen et al. 2016). Despite the extensive efforts to 
simulate fires and area burned, there remains a need for computation-
ally efficient fire models that can easily integrate with simulation 
models, incorporate recent patterns of fire occurrence, and allow for 
rapid assessment of future potential changes in fire occurrence. 

Here, we investigate relationships among fire season aridity, the 
annual number of fires, and annual area burned in 11 extensively 
forested ecoregions of the western United States (Fig. 1). We focus on 
extensively forested ecoregions because of their known sensitivity to 
annual variations in fire-season aridity relative to non-forested ecor-
egions (Littell et al., 2018). For each ecoregion, we identify significant 
relationships between fire-season aridity and the annual number of fires, 
and thresholds in fire-season aridity that separate years with significant 
differences in area burned. We use these ecoregion-specific data to 
develop a model that uses aridity thresholds to project climate-driven 
changes in the number of fires, generates fire sizes, and calculates 
annual area burned. In a final step, we apply the model to simulate 
climate-driven changes in annual area burned in the Southern Rocky 
Mountains ecoregion using climate projections for 2021 – 2100. 

2. Methods 

2.1. Quantifying annual area burned and fire-season climatic water 
deficit (FSCWD) for 1980 – 2020 

We investigated relationships among seasonal drought, the annual 
number of large fires, and annual area burned in 11, extensively forested 
ecoregions in the western United States (Fig. 1). We used ecoregions 
defined by National Land Cover Database (NLCD) mapping zones as our 
unit of analysis (Homer et al., 2015). Vegetation ranges from alpine 
tundra to subalpine and montane forests, open woodlands, sagebrush 
steppe, and semiarid grasslands in these mountainous ecoregions. We 
compiled annual area burned records for each ecoregion from 1980 – 
2020 (see Supporting Information). 

We calculated monthly climatic water deficit (CWD; Stephenson, 
1998) as a proxy for fuel aridity at the ecoregion scale. Defined as the 
difference between potential evapotranspiration (PET) and actual 
evapotranspiration (AET), CWD quantifies evaporative demand unmet 
by soil water. We used reference evapotranspiration (ETo, ASCE 
Penman-Montieth; Abatzoglou, 2013) to represent PET and estimated 
monthly AET with the soil water balance model used by the LANDIS-II 
forest landscape model, NECN extension (Scheller et al., 2021; see 
Supporting Information). We summarized monthly CWD and area 
burned at the ecoregion level. We used the same fire season for all 
ecoregions, defined as the months that captured >95% of area burned 
for the entire study region, then summed monthly CWD values to assign 
an annual fire-season CWD (FSCWD) for 1980 – 2020 to each ecoregion. 
This resulted in annual values for FSCWD and area burned for each 
ecoregion. 

2.2. Relationships between fire-season aridity, the annual number of large 
fires, and area burned 

Whereas most fires in western North America are small (i.e., < 1 ha), 
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Fig. 1. The western United States, with extensively forested ecoregions 
(Homer et al., 2015) shown in gray. See Table 1 for ecoregion names. State 
boundaries (gray lines) are shown for reference. 
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large fires account for most area burned (Short, 2021). We analyzed only 
large fires, defined as those fires that cumulatively contributed > 99% of 
total burned area in each ecoregion from 1980 – 2020 by identifying 
separate large-fire-size thresholds for each ecoregion. For each ecor-
egion, we fit a linear regression between the FSCWD and the annual 
number of large fires using all 41 years of the calibration period. We also 
fit 41 separate regressions using 40 years of data as part of a 
leave-one-year-out analysis. 

Annual area burned does not increase linearly with aridity in 
extensively forested ecoregions of western North America. Instead, area 
burned tends to be extensive when fuel aridity exceeds quantifiable 
aridity thresholds (AT), and limited or moderate in fire seasons that do 
not exceed these thresholds. We identified ATs for each ecoregion by 
relating annual area burned to FSCWD using conditional inference trees 
(Hothorn et al., 2006) to separate years into either two or three area 
burned categories: limited, moderate, and extensive, or moderate and 
extensive (see Supplemental Information). For each ecoregion, we 
identified ATs with all 41 years of the calibration period, and with 40 
years of data by leaving out each year once as part of a 
leave-one-year-out analysis. 

2.3. Applying aridity thresholds to simulate climate change impacts on 
area burned 

We evaluated model performance by simulating annual area burned 
in each ecoregion from 1980 to 2020 using historical climate. We first 
used the linear regressions to predict the annual number of large fires. 
To represent variability, we randomly selected the number of fires from 
a normal distribution defined by the regression’s predicted value and 
standard error. To determine the size of each fire, we fit separate fire- 
size distributions to the groups of years defined with the ATs as being 
limited, moderate, or extensive fire years. We fit both lognormal and 
Pareto distribution functions, both of which produce long-tailed distri-
butions suitable for representing our data where a small number of very 
large fires account for most area burned (Holmes et al., 2008) with the 
fitdistrplus package in R (Delignette-Muller and Dutang, 2015; R Core 
Team, 2022). We then drew random fire sizes from the limited, mod-
erate, or extensive fire-size distributions depending on the value of the 
annual FSCWD relative to the lower and upper ATs and summed the area 
of all simulated fires for each year. 

For each ecoregion, we generated 1000 41-year simulations from the 
full and leave-one-year-out datasets. We assessed model performance by 
calculating three metrics that compare observed to simulated area 
burned: root mean square error standardized by the standard deviation 
of annual area burned (RMSE / SD), mean error, and Pearson’s corre-
lation. RMSE measures accuracy and dividing by the standard deviation 
of observed annual area burned allows comparison among ecoregions; 
smaller values indicate greater model skill (Littell et al., 2009). We used 
mean error as a measure of bias, indicating simulations that over- or 
underestimate area burned relative to observations. The coefficient of 
determination (r2) measures how well year-to-year variability in the 
predictions follow observations for the calibration period. We tested for 
temporal autocorrelation in the residuals of the modeled number of 
large fires and annual area burned with the acf function in R and plotted 
the distributions of residuals through time for all ecoregions and models 
to examine shifting biases in predictions. 

To demonstrate how our modeling approach can be used to make 
projections, we simulated area burned under changing future climate for 
the Southern Rocky Mountains using the area burned model fit with all 
41 years from the calibration period. We obtained temperature, pre-
cipitation, and reference evapotranspiration (ETo) data from the period 
1980 – 2100 for 13 global climate models (GCMs) under the RCP 8.5 
emissions scenario that were downscaled to a 4 km grid using multi-
variate adapted construction analogues (MACA; Abatzoglou and Brown, 
2012). We calculated GCM FSCWD as described above then ranked the 
13 GCMs by FSCWD from 2020 – 2100 and selected 5 GCMs that 

represented the full range of projected aridity (i.e., the minimum, 1st 
quartile, median, 3rd quartile, and maximum FSCWD; Henne and 
Hawbaker, 2023). 

3. Results 

We set a fire season for our analyses of May-October, during which 
most fires (96%), and area burned (97%) were recorded in the 11 
ecoregions. Within this fire season, the threshold for large fires that 
contributed >99% of area burned varied among ecoregions from 10 ha 
in the Utah High Plateaus to 80 ha in the Middle Rocky Mountains and 
Oregon Coastal Range (Table 1). 

We found significant (p < 0.01), positive linear relationships be-
tween FSCWD and the number of large fires in all ecoregions. However, 
the strength of the correlations varied (Table 1). Ecoregions with a 
strong positive correlation (e.g., Middle Rocky Mountains, r2 = 0.69) 
had large interannual variation in the number of large fires (Figs. 2a and 
S1), indicating a greater importance of fire-season climate as a deter-
minant for the number of large fires. In ecoregions with a lower corre-
lation, multiple large fires occurred in most years (e.g., Sierra Nevada 
Range, r2 = 0.18). 

We identified ATs that distinguish years with significant differences 
in annual area burned for all ecoregions (Table 1, Figs. 2b and S2). Two 
ecoregions, the Oregon, and California Coastal, ranges have one signif-
icant (p < 0.05) AT. We identified two significant ATs in the remaining 
ecoregions; a lower threshold (AT1) distinguishes years with limited and 
moderate area burned, and an upper threshold (AT2) separates years 
with moderate and extensive area burned (Table 1; Figure S2). For 
example, in the Southern Rocky Mountains, 30 years had limited (mean 
= 7979 ha), 7 years had moderate (mean = 32,652 ha), and 4 years had 
extensive (mean = 169,993 ha), area burned. All three divisions had a 
large number of fires to fit fire-size distributions. There were 634 fires in 
the limited area burned years, 255 fires in the moderate area burned 
years, and 251 fires in the extensive area burned years. Mean fire sizes in 
limited, moderate, and extensive fire years varied among ecoregions. In 
the Sierra Nevada Range and Mogollon Rim, where very large fires 

Table 1 
Extensively forested ecoregions in the western United States (Homer et al., 
2015). Numbers in parentheses correspond to labels in Fig. 1. Fires larger than 
the large fire threshold comprise >99% of burned area in each ecoregion. Fires 
smaller than this threshold were omitted from the analyses. The coefficient of 
determination (r2) values are for linear regressions relating fire-season climatic 
water deficit (FSCWD) to the annual number of large fires. All regressions are 
highly significant (p < 0.01). Aridity thresholds (AT1 and AT2) distinguish years 
with significantly different (p < 0.05) area burned. Years when FSCWD < AT1 
tend to have limited area burned, years when AT1 > FSCWD < AT2 tend to have 
moderate area burned, and years when FSCWD > AT2 tend to have extensive 
area burned. AT values are FSCWD, standardized by subtracting the mean and 
dividing by the standard deviation of observed FSCWD from 1980 – 2009.  

Ecoregion Large fire Coefficient of AT1 AT2  
threshold 
(ha) 

determination 
(r2)   

Northern Cascades (1) 16 0.28 0.84 NA 
Oregon Coastal Range (2) 16 0.26 1.33 NA 
Northern California Coastal 

Range (3) 
80 0.35 0.88 1.48 

Sierra Nevada Range (6) 12 0.18 − 0.03 1.17 
Cascades Range (7) 16 0.24 0.28 0.99 
Northwestern Rocky 

Mountains (10) 
28 0.59 − 0.31 0.36 

Mogollon Rim (15) 14 0.20 − 0.18 0.86 
Utah High Plateaus (16) 10 0.37 − 0.14 1.21 
Northern Rocky Mountains 

(19) 
25 0.39 − 0.52 0.61 

Middle Rocky Mountains 
(21) 

80 0.69 0.47 1.25 

Southern Rocky Mountains 
(28) 

12 0.56 0.68 1.29  
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occurred in even wetter-than-average years, mean area burned was >
22,000 ha during limited fire years. In contrast, in the Rocky Mountain 
ecoregions (i.e., Northwestern, Northern, Middle, and Southern Rocky 
Mountains), wet years dampened the number and size of fires, and 
limited fire years all averaged < 8000 ha (range of 502 – 7979 ha). 

The leave-one-year-out analysis identified at least one alternate AT 
in all ecoregions. In most ecoregions, these alternate splits did not cause 
a major change in the number of years classified as limited, moderate, or 
extensive, indicating most individual years had no impact on the posi-
tion of ATs (Figs. 2b, S2). However, in four ecoregions where area 
burned in a single year greatly exceeded area burned in all other years (i. 
e., the Northern California Coastal, Cascades, and Sierra Nevada ranges 
in 2020, and the Middle Rocky Mountains in 1988), removing the 
extreme fire year strongly affected the ATs. The Southern Rocky 
Mountains ecoregion provides an important contrast. There, 2020 had 
both the highest observed FSCWD and area burned. However, extreme 
fire years in 2002 and 2018 with a similarly high FSCWD (Fig. 2), meant 
that omitting 2020 did not shift the ATs. 

3.1. Burned area simulations for 1980 – 2020 

Observed fire-size distributions for limited, moderate, and extensive 
fire years were not significantly different (p > 0.05, Cramer-von Mises 
test) from the fitted lognormal and Pareto distributions in any ecoregion 
when calculated with all years. Because we used a random sample of 
observed fire sizes for the Cramer-von Mises tests, statistical distribu-
tions estimated for some years in the leave-one-year-out analysis were 
significantly different from the subset of observed fire sizes. However, 
on average, observed fire size distributions for limited, moderate, and 
extensive fire years were also not significantly different from the 
lognormal and Pareto distributions for the leave-one-year-out analysis 
for all ecoregions. 

Simulated area burned tracked observed interannual variation in 
area burned for all ecoregions during the calibration period (Figs. 3 and 
S3; Henne and Hawbaker, 2023). Residuals for the mean simulated 
number of fires showed no significant autocorrelation in all ecoregions 
for most of the 1000 simulations for models calibrated with the full data 

set and models for the leave one-year-out analysis (Figure S4). Likewise, 
residuals of area burned simulated with lognormal and Pareto distri-
butions were not autocorrelated for most replicates in all ecoregions 
with models trained with all years or the leave one-year-out analysis 
(Figure S5). Correlations between the mean simulated and observed 
annual area burned were significant in all ecoregions when models were 
trained using all years (p-value < 0.05) and r2 ranged between 0.48 and 
0.74 (Table S1). The type of fire-size distribution (lognormal or Pareto) 
had little influence on r2 values. The largest difference was in the Utah 
High Plateaus (0.07 difference). However, individual years had a large 
influence on the correlation. Correlations were not significant in the 
leave-one-year-out analysis for the Sierra Nevada Range and Cascades 
Mountain Range. Whereas correlations remained significant for all other 
ecoregions, r2 was consistently lower (i.e., 0.09 – 0.22 decrease). 

Simulations with Pareto fire-size distributions better captured the 
observed range in area burned than simulations with lognormal distri-
butions (Table S1). With lognormal distributions, observed area burned 
fell within the simulation range between 37 and 41 years in the different 
ecoregions (Figs. 3 and S3; Table S1). Most years with observed area 
burned outside the simulation range were underestimates of area burned 
for extensive fire years (e.g., 2020 in the Sierra Nevada Range). Over-
estimates occurred in one year in the Northern Cascades Range and two 
years in the Middle Rocky Mountains (Figure S3) because we assumed a 
minimum of one large fire in every year. This assumption is broadly 
consistent with fire records; no years lacked a recorded fire, and years 
without a large fire occurred in only the Northern Cascades (two years), 
Northern Rocky Mountains (one year), and Middle Rocky Mountains 
(three years). With Pareto fire-size distributions, observed area burned 
was less than the simulated maximum in all ecoregions and all years for 
models trained with the full dataset, but fell outside the simulation range 
with Pareto distributions in 2017 for the Oregon Coastal Range, and 
2020 for the Sierra Nevada Range in the leave-one-year-out analysis. 

Negative mean error values for all ecoregions indicate that fire 
simulations drawn from lognormal distributions generally under-
estimated total area burned; mean error ranged from -66% to − 15% for 
models trained with all years, and from − 66% to − 14% for the leave- 
one-year-out models (Table S1). Drawing fire sizes from Pareto 
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distributions, which include a higher probability of very large events, 
resulted in more simulated area burned. With Pareto distributions, mean 
error ranged from − 44% to +47% when all years were considered, and 
− 41% to +50% with the leave-one-year-out analysis. In most ecor-
egions, mean error was generally closer to zero with Pareto distribu-
tions. Time series of residuals show that model errors were not 
significantly different between models calibrated with all years and the 
leave-one-year-out analysis (Figures S6, S7). However, residuals were 
generally larger after 2000 when conditions generally became drier in 
the western US and observed area burned increased (Williams et al., 
2020; McCabe and Wolock 2021). 

Simulations with fire sizes drawn from Pareto distributions had 
higher RMSE/SD than those drawn from lognormal distributions, indi-
cating lesser skill and wider dispersion of the simulation results 
(Table S1). Model skill was highest in the Southern Rocky Mountains 
with lognormal distributions (RMSE/SD = 0.75). Models using Pareto 
distributions showed moderate skill in the Southern Rocky Mountains 
(RMSE/SD = 0.85), and a small sensitivity to individual years (RMSE/ 
SD = 0.89 for the leave-one-year-out analysis). 

3.2. Area burned projections for the Southern Rocky Mountains 

We selected five GCMs that span the range in FSCWD projected by 
the CMIP5 models for the period 2021 – 2099 (Henne and Hawbaker, 
2023) and used annual FSCWD from these GCMs to simulate annual area 
burned. Observed FSCWD was on average higher (i.e., drier) than GCM 
FSCWD from 1981 – 2020, especially after 2000. Most years were 
classified as limited fire years in the historical (28 years) and GCM data 
(31 – 35 years). However, four years, 2002, 2012, 2018, and 2020, had 
drier fire seasons than all but one year in the five GCMs. The historical 
data also had more moderate fire years (six) than the GCMs, which 
ranged from two to five years. The GCM with the lowest FSCWD 
(CNRM-CM5) had one extensive fire year during the historical period, 
HadGEM2 with the highest FSCWD had five, and the remaining models 
three. Relatively low GCM FSCWD during the historical period (Figs. 4 
and 5) may mean that the GCMs also underestimate FSCWD in the 
coming decades. 

Separation among the GCMs and historical climate is evident after 
2020 (Figs. 4, 5). From 2021 – 2060, the relatively moist CNRM-CM5 
does not project drier fire seasons than the historical record. In 

1980 1990 2000 2010 2020

0

1

2

3

4

5

6

Southern Rocky Mountains

1980 1990 2000 2010 2020

0

1

2

3

4

5

6

Year Year

A. Lognormal all years B. Lognormal leave one year out

C. Pareto all years D. Pareto leave one year out

1980 1990 2000 2010 2020

1980 1990 2000 2010 2020

An
nu

al
 a

re
a 

bu
rn

ed
 (l

og
10

 h
a)

An
nu

al
 a

re
a 

bu
rn

ed
 (l

og
10

 h
a)

Fig. 3. Historical area burned simulations for the Southern Rocky Mountains. Blue lines show observed annual area burned. Dotted lines show the median of 1000 
simulations. Red area shows the interquartile range, orange area the 5th to 90th percentile of simulated area burned, and yellow area the full simulation range. A. 
Fire sizes were drawn from lognormal distributions fit to all years (1980 – 2020). B. Fire sizes were drawn from lognormal distributions with the simulation year left 
out. C. Same as A. except using Pareto distributions. D. Same as B. except using Pareto distributions. 

P.D. Henne and T.J. Hawbaker                                                                                                                                                                                                              



Ecological Modelling 477 (2023) 110277

6

contrast, IPSL-CM5B, CCSM4, and bcc-csm1 which rank as the 1st 
quartile, median, and 3rd quartile of FSCWD all have 10 moderate fire 
seasons, but 3, 10, and 11 extensive years. HadGEM2 has six moderate 
and 25 extensive fire years in this same interval. During the final 40 
years, from 2060 – 2099, most years are either moderate or extensive 
fire years for all GCMs. The two wettest GCMs (CNRM-CM5, IPSL-CM5B) 
maintained 14 limited fire years, and nine and 11 moderate fire years 
respectively. Most years are extensive fire years in the drier GCMs. 
CCSM4 has 25, bcc-csm1 30, and HadGEM2 37, extensive fire years. The 
frequency of extensive fire years may provide an important marker for 
changing fire-climate relationships. For the Southern Rocky Mountains, 
the timing of such a shift varies among GCMs. Under the extreme 
HadGEM2, average FSCWD exceeds the upper AT after 2038 (i.e., 10- 
year moving average FSCWD > AT2; Figs. 4a and 5a). The average 
FSCWD fluctuates near AT2 after 2050 with bcc-csm1 and remains 
above AT2 after the 2080s. Average FSCWD also remains above AT2 
during the 2080s but does not exceed AT2 until the 2090s with the 
wetter CNRM-CM5 and IPSL-CM5B GCMs. 

We summarized simulated area burned for the three 40-year periods 
with the median, range, and interquartile range to help visualize and 

compare long-term trends relative to the calibration period (Fig. 6). 
Observed area burned in the Southern Rocky Mountains from 1981 – 
2020 exceeded the range of area burned simulated with observed 
climate and lognormal distributions. However, one year (i.e., 2020) had 
a major impact on this offset. In contrast, observed area burned fell 
within the interquartile range of simulations using Pareto distributions. 
Median simulated area burned was lower than observations for the 
historical period with all GCMs with lognormal (− 49% – − 76%) and 
Pareto (− 23 – − 60%) distributions, which was not surprising given that 
both the mean FSCWD and frequencies of moderate and extreme fire 
years are lower in the GCMs. 

Simulated area burned increased in all GCMs during the period 2021 
– 2060 (Fig. 6). Median area burned simulated with lognormal distri-
butions remained below observed area burned from 1981 – 2020 for the 
two wettest scenarios, CNRM-CM5 (− 65%) and IPSL-CM5B (− 47%), 
was slightly higher for CCSM4 (+2%) and bcc-csm1(+3%), and about 
double (+101%) for HadGEM2, the driest GCM. For HadGEM2, the 
frequency of extreme fire years increased markedly after 2040 (Fig. 4). 
With Pareto distributions, the median simulated area burned for CNRM- 
CM5 and IPSL-SM5B from 2021 – 2060 was lower than observed from 
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1981 – 2020 by − 44% and − 18%, but much higher with CCSM4 (+47), 
bcc-csm1 (+49%), and HadGEM2 (+174%). During the final 40 years of 
simulations, the increase in median simulated area burned relative to 
observed area burned in 1981 – 2020 ranged from +33 – +246% with 
lognormal distributions and +94 – +360% with Pareto distributions 
(Fig. 6). 

4. Discussion 

4.1. Aridity thresholds for limited, moderate, and extensive fire years 

Fire-season climatic water deficit (FSCWD) effectively distinguishes 
years with limited, moderate, and extensive area burned in extensively 
forested ecoregions with variable land cover and climate. Water deficit 
metrics like FSCWD are robust predictors of annual area burned in 
forested regions because they integrate multiple factors that constrain 
fuel moisture (e.g., temperature, precipitation, insolation, soils). 
Although our burned area model relies on a single water deficit metric, 
we achieve similar predictive skill at the ecoregion scale as more com-
plex models that integrate multiple variables (Littell et al., 2018, 2009). 
FSCWD also increases with fire-season length, a critical driver of recent 
increases in area burned (Westerling et al., 2006), because it sums 
monthly water deficits over a period that exceeds the typical fire season 
through much of our study area. 

Aridity thresholds link area burned to fire-season water balance at 
the regional scale. However, flammability also varies within regions at 
finer scales. Warm, dry topographic settings (e.g., lower elevations, 
south-facing slopes) may experience flammable conditions during a 
typical year while adjacent north-facing slopes and upper elevations 
remain relatively moist (Dillon et al., 2011). Topographic position 
similarly affects productivity and therefore fuel loads (Kane et al., 2015; 
Rollins et al., 2002). Intraregional variation in fuel moisture and avail-
ability may explain the occurrence of two aridity thresholds in the 
ecoregions considered here, which include complex, mountainous 
terrain. In ecoregions with two ATs, flammable conditions are very 
unlikely at both local and regional scales during years with limited 
burning (i.e. FSCWD < AT1). For example, in the Southern Rocky 
Mountains, mean area burned is 7979 ha when FSCWD < AT1, probably 
because moist conditions limited fire spread through much of the 
ecoregion. In contrast, during years with moderate area burned (i.e., 
AT1 > FSCWD < AT2), mean area burned is 32,652 ha, and it is likely 
that the driest landscapes (e.g., submontane forests and grasslands at 
lower elevations or southerly aspects) become flammable. Years with 
extensive area burned (mean area burned = 169,993 ha) occur when 
regional climate overwhelms local heterogeneity in fuel moisture and 
fires readily spread in even typically moist settings (e.g., subalpine 
forests at high elevations and on northerly aspects). Extensive burning 
tends to coincide with high severity fires in forests of the western United 
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States (Dillon et al., 2011; Parks and Abatzoglou, 2020), which indicates 
that typically moist settings, with higher fuel loads become flammable. 
Because we averaged aridity at the ecoregion scale, our ATs may identify 
fire seasons where a critical proportion of the landscape becomes 
flammable. Thus, during extensive fire years, fires readily spread among 
stands with distinct topographic settings and heterogeneous fuel mois-
ture levels that in wetter years could restrict fire spread. 

4.2. Influences on model performance 

Model performance varied among ecoregions and with the choice of 
fire-size distribution type. Area burned models for ecoregions in the 
Rocky Mountains showed the highest skill and strongest correlations 
with observations (Table S1). In these ecoregions, interannual variation 
in fuel moisture exerts the strongest control on fire activity (Littell et al., 
2018). Fine fuel availability can limit fire spread locally, e.g., in sub-
montane Pinus ponderosa forests. However, at higher elevations in the 
Rocky Mountains, extensive subalpine forests have abundant, 
well-connected fuels that support high severity fire regimes and fire 

spread is limited primarily by fuel moisture (Sherriff and Veblen, 2008). 
In contrast, in the Mogollon Rim, where dry conditions and large fires 
are typical in most years, low model skill (Table S1) may relate to the 
importance of fine fuel limitations on fire activity, and also reflect the 
lack of distinction among fires with differing severities in our model. 
Woodlands and submontane forests with relatively open canopies and 
grassy understories are typical of the Mogollon Rim (Hurteau et al., 
2014). Therefore, climatic factors that control interannual variation in 
fine fuel availability, especially antecedent moisture, may be needed in 
combination with current-year aridity to more effectively predict vari-
ations in area burned in ecoregions like the Mogollon Rim (Swetnam and 
Betancourt, 1990). 

Extreme fire years affected the position of ATs and model skill in 
some ecoregions. For example, leaving out 2020 from the Sierra Nevada 
and Cascades ranges resulted in non-significant correlations between 
simulated and observed area burned over the 41-year calibration period, 
and large reductions in model skill. Thus, our leave-one-year-out models 
did not capture area burned in years when area burned vastly exceeded 
all previous observations. Similar situations may develop in other 
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ecoregions where extreme fire years that greatly exceeded previously 
observed area burned did not occur during the calibration period. For 
example, in the highly productive forests of the Northern Cascades and 
Oregon Coastal Range, average area burned is lower than other ecor-
egions, which may affect model fit and performance. Extensive burning 
in these ecoregions is highly episodic, and smaller fires exhibit weak 
climatic control (Colombaroli and Gavin, 2010). Therefore, the inclu-
sion of more years, especially with extreme area burned may be neces-
sary to precisely define ATs that identify extensive fire years. In contrast, 
multiple extreme fire years that can help characterize fire activity under 
extremely dry conditions occurred during the calibration period in the 
Southern Rocky Mountains (Fig. 2). Ultimately, while extreme fire years 
may shift ATs, inclusion of such years may be critical to identifying 
fire-season analogues for a warmer and drier future. 

The value of accurately depicting annual versus decadal scale vari-
ations is an important consideration when selecting statistical distribu-
tions for area burned models. Pareto distributions better captured rare 
extreme events that dominate area burned on decadal scales in the 
western United States. Lognormal distributions more effectively repro-
duced interannual variability, as demonstrated by higher model skill, 
but are more likely to miss extreme fire events that can dominate 
ecological processes for decades. This difference results from the higher 
probability of rare, extreme events (i.e., very large fires) with Pareto 
distributions, and the resulting wider range of simulated area burned in 
our simulation replicates (Holmes et al., 2008). The statistical distri-
bution that best characterizes fire-size distributions may also change 
through time (Li and Banerjee, 2021). For example, Pareto distributions 
may better approximate fire sizes as the proportion of area burned 
incurred during extreme fire events increases in a warming climate, as is 
likely in ecosystems with flammability-limited fire regimes (Williams 
et al., 2019). 

Changes in fuel availability and fire suppression policies and/or ef-
ficacy may affect the long-term stability of ATs by changing relation-
ships between fire spread and climate (Higuera et al., 2015; Taylor et al., 
2016). In several ecoregions with increasing trends in area burned 
during the calibration period (e.g., Sierra Nevada Range, Mogollon Rim, 
Southern Rocky Mountains), we overestimated area burned during the 
1980s and/or 1990s but underestimated during the 2020s (Figs. 3 and 
S3). Observed increases in area burned relate in part to increasing 
temperatures and fuel aridity between these intervals (Abatzoglou and 
Williams, 2016). However, model performance may have also been 
affected by the changing success of fire suppression in these decades. 
That is, fire suppression limited area burned during the relatively moist 
1980s but was less successful during the historically dry 2010s as the 
number of days and amount of area experiencing extreme fire danger 
increased (Abatzoglou et al., 2021b). Changes in fire suppression pol-
icies may also have had a modest effect on our results. After 2009, fire 
managers were granted greater flexibility to allow some fires to burn, 
especially in wilderness areas, which may have also contributed to our 
underestimate of area burned in the Rocky Mountains and Mogollon 
Rim in the 2010s (Young et al., 2020). 

4.3. Implications from the Southern Rocky Mountains for projecting area 
burned in a warming climate 

Our threshold approach does not extrapolate beyond observed 
climate-fire relationships to project area burned in a warming climate. 
Although we calibrated our model with recent fire years, we identified 
ATs that distinguish significant differences in annual area burned and 
draw fire sizes from distributions defined by these thresholds. Therefore, 
median area burned in our simulations approaches the maximum of past 
observed annual area burned (Figs. 4 and 5). Nonetheless, because fire 
sizes are generated randomly, maximum simulated area burned can 
exceed maximum observed area burned, especially as the number of 
large fires increases with FSCWD (Figs. 2 and 3). Furthermore, decadal 
area burned can also exceed observations as the frequency of extensive 

fire years (i.e., FSCWD > AT2) increases. 
A key challenge for projecting area burned in a warmer and drier 

future is that fire-climate relationships change through time; they are 
non-stationary (Gavin et al., 2007; McKenzie and Littell, 2017). For 
example, climate was a stronger predictor of area burned during recent 
decades than during the mid-20th century for many ecoregions in the 
western United States (Higuera et al., 2015; Littell et al., 2009). Thus, 
area burned models developed for one period can over or underpredict 
fire when applied to novel climate conditions. Vegetation change is an 
important driver of non-stationarity. Changing climate and disturbance 
regimes can alter fuel accumulation, decomposition, and structure, 
which affects fire spread and ultimately area burned (Batllori et al., 
2013; Matthews et al., 2012; Parks et al., 2018). Consequently, as with 
other models, our simulations become less reliable as the frequency of 
extensive fire years increases and climate departs from the historical 
range of variation under which our models were trained (Littell et al., 
2018; Westerling et al., 2011), especially if interactions between wild-
fires and drought stress alter forest regeneration (Davis et al., 2019). 
Littell et al. (2018) concluded that simulated fire rotations for an ecor-
egion that are shorter than the calibration period of a statistical area 
burned model violate the assumption that future vegetation will 
resemble historical vegetation and therefore support a similar 
fire-climate relationship. Similar inferences can be made from our 
approach. Once most years pass the threshold for extensive area burned, 
it is unlikely that vegetation will support the fire-climate relationships 
observed during the calibration period. For the Southern Rocky Moun-
tains, the timing of such a shift varies among GCMs from after 2038 
under the extreme HadGEM2, but not until the 2090s with the wetter 
CNRM-CM5 and IPSL-CM5B GCMs (Figs. 4a, 5a). Thus, although we 
project major increases in area burned under all GCMs (Fig. 6), the 
timing of departure from observed fire-climate relationships will likely 
depend on changes in future precipitation regimes, which have higher 
uncertainty than temperature projections (Woldemeskel et al., 2016). 

Statistical area burned models can attenuate projected area burned 
in a warming climate to account for vegetation feedbacks to fire-climate 
relationships (Abatzoglou et al., 2021a; Turco et al., 2018). However, 
calibrating vegetation feedbacks in area burned simulations is nontrivial 
because the specific impacts of vegetation change on fire regimes vary 
among forest types and ecoregions (Gavin et al., 2007; Tepley et al., 
2018). In projections of area burned for the western United States, 
Abatzoglou et al. (2021a) limited area burned in a warming climate 
following the assumptions that fire-fuel feedbacks diminish the forest 
area capable of carrying subsequent fires and that fuel limitations can 
diminish through time. These authors concluded that fuel availability 
will impart only a modest limitation on forest area burned through the 
mid-century relative to climate-driven increases in flammability. 
Climate change and fire activity can also have positive feedbacks on area 
burned. Climate and fire-driven shifts that reduce tree density or trigger 
forest to shrubland or grassland conversion can increase fine fuel 
availability and promote short-interval burning, even if fire intensity is 
reduced (Coop et al., 2020; Tepley et al., 2018). Therefore, assumptions 
that fire activity and/or warming will limit future area burned are not 
always justified and in projecting area burned, the range of GCM un-
certainty may be greater than uncertainty in changes to fire-climate 
feedbacks (Turco et al., 2018). One way to address the shortcomings 
of purely statistical modeling approaches is to couple statistical models 
with landscape simulation models. In this approach, the statistical 
model would provide regional targets to the landscape simulation model 
for area burned, or fire-size distributions that change with future 
weather and climate conditions. However, the landscape simulation 
model would determine the actual area burned, accounting for spatial 
variability in biomass and how that variability was altered by past fires 
and other disturbances. We have used this approach, coupling our 
aridity threshold fire model with the LANDIS-II forest landscape model, 
which tracks fire spread across landscapes in addition to species estab-
lishment, growth rates, and biomass levels (Henne et al., 2021). Future 
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efforts could also dynamically adjust aridity thresholds to depict 
climatically driven changes in fuel. For example, Pausas and Paula 
(2012) found a positive linear relationship between aridity thresholds 
and productivity among 13 regions in Spain that could be applied to 
dynamically adjust aridity thresholds in a changing climate. 

5. Conclusions 

Our aridity threshold fire model relates the annual number and size 
of wildfires to fire-season aridity to simulate climate-driven changes in 
annual area burned at the ecoregion scale. By applying thresholds in 
area burned, our model projects abrupt changes in annual area burned 
that result as the frequency of extreme fire seasons increases, with major 
increases after 2020 for most GCMs, and all GCMs after 2060. Because 
our model requires limited inputs it can be readily updated to incor-
porate recent observations and the knowledge gained from future 
extreme fire years. Such adaptability may be critical in the western 
United States and other regions where climatic conditions and fire re-
gimes are rapidly diverging from past observations (Higuera and Abat-
zoglou, 2021), but also allows application of our model at broader 
scales. Our statistical model is robust enough to be used on its own to 
project the timing of major changes in annual area burned, but also 
applicable to models that directly simulate feedbacks among climate, 
vegetation, land use, and fire. For example, forest landscape models 
(Henne et al., 2021) or state and transition models (Sleeter et al., 2015; 
Marchal et al., 2020) that require ignition counts and fire size distri-
butions to simulate wildfire, which our AT model produces. Similarly, 
we provide a low complexity alternative for fire-enabled DGVMs 
(Hantsen et al. 2016) that directly calibrates thresholds in fire-season 
moisture and makes few assumptions about fire spread. Development 
of empirical relationships between climatic thresholds for extensive fire 
years over gradients in productivity and aridity could further the 
applicability of our approach to global fire models (Pausas and Paula, 
2012). 
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