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ABSTRACT As the frequency and intensity of power line-inducedwildfires increase due to climate-, human-
, and infrastructure-related risk drivers, maintaining power system resilience and reducing environmental
impacts become increasingly crucial. This paper presents a comprehensive methodology to assess the
susceptibility, vulnerability, and risk of power line-induced wildfires for lines and nodes in an electric grid.
The methodology integrates a well-established wildfire spread simulator into power flow analysis through a
set of analytical steps. The proposed approach is applied to a case study using the IEEE 30-bus test system
mapped on a region in the Yosemite-Ritter section of the Sierra Nevada in California. The main findings
include the identification of high-risk lines and high-impact nodes and quantification of their vulnerability.
These insights can inform the implementation of microgrids, virtual power plants, and distributed energy
resources (DERs) to increase grid resilience and guide risk mitigation efforts such as line undergrounding,
vegetation management, and maintenance procedures. The proposed methodology intends to provide an
effective tool for power system planners and operators to assess the risk exposure of their grid to power
line-induced wildfires, enabling them to make informed decisions for allocating capital to their resilience
building and risk mitigation strategies.

INDEX TERMS Power systems, resilience, risk assessment, transmission lines, vulnerability analysis,
wildfire.

I. INTRODUCTION
The National Oceanic and Atmospheric Administration
(NOAA) reports indicate a significant rise in the impact of
wildfires over recent decades. From 1994 to 2003, wildfires
caused an inflation-adjusted $12.2 billion in damages and
43 deaths. The next decade saw a slight increase to $14.5 bil-
lion and 79 deaths. However, from 2014 to 2023, dam-
ages escalated dramatically to $106.5 billion with 369 lives
lost [1]. This growing threat poses a significant challenge
to the civil infrastructure systems, as well as the safety and
economic wellbeing of the communities residing in wildfire-
prone areas. The keystone of modern society is a resilient
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power grid that ensures an uninterrupted supply of electricity
to citizens and interdependent lifeline systems even during
extreme events. Recent disasters in the western U.S. have
underscored the need to rethink and transform traditional
approaches to wildfire management while predicting and
preventing power line-induced wildfires. The 2018 Camp fire
in Northern California—which was sparked by PG&E’s elec-
trical infrastructure—took 85 lives, burned a total of 153,336
acres, destroyed more than 18,800 homes and structures, and
made PG&E face a multibillion-dollar lawsuit as a result [2],
[3]. Wildfires ignited by power grids can result in substantial
impacts on both the environment and the grid itself and can
cause widespread power outages. The Dixie Fire in Northern
California in 2021 is amicrocosm of recent catastrophic wild-
fires caused by power lines, which burned over 963,000 acres
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and destroyed thousands of structures [4]. This devastating
fire not only caused extensive damage to the power infrastruc-
ture but also led to widespread outages, as utility companies
were forced to shut down parts of the grid and implement
preemptive measures, such as Public Safety Power Shutoffs
(PSPS), to prevent further spread of the fires [5]. Fig. 1
highlights the growing trend of wildfires ignited by power
grids over time among other causes of wildfires in the U.S.
from 1992 to 2020—emphasizing the increasing importance
of mitigating these incidents. Fig. 2 compares the frequency
to the average burned area (impact) for different causes of
wildfire incidents in the U.S. from 1992 to 2020. As the
historical data advocates, the impact of wildfires caused by
the grid is significant compared to many other incidents [6].
While power grids are responsible for less than 10% of
wildfire ignitions, they are responsible for more than 90%
of fatal wildfires in Australia. In California, power lines are
responsible for igniting four out of 20 most massive wildfires
by acreage burned, and five out of 20 largest wildfires by
structures destroyed. The cost of power line-inducedwildfires
in Northern and Southern California was about 99% of the
total cost for all fires [7].
Several studies [8], [9], [10] have identified the main

types of faults responsible for major wildfires triggered by
power grid failures: a) electric arc without physical contact,
where a high-voltage current arcs through the air and ignites
nearby vegetation or other combustible materials; b) struc-
tural failure of grid components, including rupture of cables,
fracturing of poles and supports, failures at splice joints or
anchor points, and transformer explosions. These incidents
lead to sparks or live wires falling, potentially igniting the
surrounding area; and c) external interference which occurs
when objects such as trees, branches, or animals fall onto or
contact power lines. This can cause short circuits or physical
damage to the power infrastructure, leading to the emission
of sparks or molten metal particles that can ignite nearby fuel.

The scale of power line-induced wildfires highlights their
significance, as their impact on other parts of the grid expands
beyond their initial ignition point, correlating with the extent
of exposed infrastructure. Therefore, understanding the sus-
ceptibility, vulnerability, and risk of these extreme events
on transmission lines and nodes is crucial for power system
planners to develop effective strategies for managing the grid
resilience. Risk assessment helps identify which transmis-
sion lines are more likely to cause significant outages and
damage to the environment when ignites a wildfire, allowing
planners to optimize their asset management strategy includ-
ing corrective and preventive maintenance, system upgrades,
infrastructure hardening, and vegetationmanagement for crit-
ical components. Impact assessment shows how much out-
age a node will face on average when a line is impacted
by wildfires. Susceptibility assessment, on the other hand,
identifies nodes and lines that are more susceptible to the
impacts of wildfires ignited from other locations, providing
insights into the weak points within the grid that require
reinforcement. Focusing on these crucial areas can inform the

risk management strategy for resilience building measures in
the face of wildfires including a) prevention strategy, b) mit-
igation and proactive response, and c) recovery prepared-
ness [11]. Additionally, the understanding of susceptibility,
vulnerability, and risk measures can inform targeted asset
management strategies, ensuring that investments are made
in the most effective manner to maintain and upgrade grid
components.

FIGURE 1. Trend of wildfires caused by the grid over time [6].

FIGURE 2. Frequency and impact comparison for wildfire causes [6].

II. LITERATURE REVIEW
With the rise in power line-induced wildfires in recent years
and their substantial impact on power systems, the need for
extensive research into wildfire risk assessment, prevention,
detection, mitigation, and resilience enhancement regarding
power grids is evident. There has been a significant increase
in research at the intersection of power grids and wildfire
risk management. This literature review examines the key
advancements and methodologies in this area, summarizing
their main contributions.

Several studies have addressed power line-inducedwildfire
prevention and riskmitigation strategies. Studies in [12], [13],
[14], [15], and [16] investigate measures adopted by electric
utilities for wildfire prevention and response. These measures
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encompass monitoring and clearing vegetation near transmis-
sion lines, fault detection strategies, equipment maintenance,
enhanced inspection and monitoring standards, various grid
hardening actions, and the application of PSPS and opera-
tional best practices. Authors in [17] present a framework
using historical wildfire data to quantify power line risks.
This framework employs an optimization model based on the
determined riskmap to prioritize which overhead lines should
convert to underground cables, reducing wildfire risk. Taking
a more data-driven approach, [18] combines the latest electri-
cal protection technology, statistical forecasting, meteorolog-
ical data, and regional risk modeling to promote a proactive
wildfire prevention strategy, guiding utilities in improving
grid operations. The study in [19] evaluates the use of PSPS as
a countermeasure against power line-induced wildfires dur-
ing adverse weather conditions, providing a methodology for
selecting specific grid segments for de-energization to reduce
risk. Expanding upon this theme, the study in [20] offers
an optimization model based on wildfire risks and efficient
post-event restoration in regions vulnerable to wildfires to
guide utilities on targeted power shutoffs, updating recom-
mendations based on fresh forecast data. Authors in [21]
present a data-driven approach to reduce the computation
time needed for power flow analysis, which is crucial for
PSPS planning during wildfires. Authors in [22] present
an optimization model designed to reduce wildfire risks by
enhancing grid operations during PSPS events and deter-
mining the best options for placing and investing in infras-
tructure, including grid-scale batteries, solar PV, and line-
hardening measures. From a cost-benefit standpoint, [23]
quantifies potential monetary losses due to wildfires and
contrasts themwith the costs of fire-resilient retrofitting mea-
sures. It evaluates the economic implications of retrofitting
transmission lines in a practical grid to mitigate wildfire
risks.

Transitioning from wildfire prevention and mitigation
strategies, other studies have turned their focus to the devel-
opment of methods for the early detection of power line-
induced wildfires. The rising severity of wildfires, as pointed
out in [24], is partially linked to faults in electric utility
distribution circuits. Building on this observation, the study
utilizes waveform analytic techniques and real-time monitor-
ing to introduce a real-time diagnostic technique, designed
to detect potential fire ignition mechanisms before they esca-
late. Reference [25] delves deeper into the understanding of
vegetation ignition characteristics and, using real-world data,
proposes a Hybrid Step XGBoost (HSXG) model to pinpoint
hazardous powerline-vegetation contacts, emphasizing early
wildfire detection. Meanwhile, in [26], a shift is seen towards
harnessing the power of real-time deep learning algorithms,
aiming to accurately classify and locate faults in power dis-
tribution grids that may trigger potential fires. Similarly,
[27] targets early detection, presenting a methodology geared
towards the precise prediction of wildfire ignition risks, with
a special focus on high impedance faults.

Another critical avenue of research focuses on grid
resilience and adapting operations under the stress of wildfire
incidents. The study in [28] explains that the challenges
of enhancing resilience against wildfires include real-time
responses, situational awareness, preventivemeasures, proac-
tive corrections, and dynamic restoration strategies. Build-
ing on this, [29] presents a proactive generation redispatch
strategy to enhance power grid resilience during wildfires,
utilizing a Markov decision process (MDP). In [30], the
authors present a framework to assess the impact of electric
vehicle (EV) evacuations and associated charging demands
on grid resilience amid wildfire events, underscoring the
growing significance of power system planning and opera-
tions during such extreme events. The study in [31] proposes
an optimization-based approach for grid expansion planning
to balance both wildfire risk and reliable power provision,
focusing on the addition of new power lines, modification
of existing lines, and the integration of DERs. Other studies,
including [32], [33], [13], and [15], have focused on the role
of DERs, microgrids, grid-hardening, and grid moderniza-
tion, to enhance grid resilience and minimize the potential
impacts of wildfire on the grid. The study in [34] examines
the physical byproducts of wildfires, such as heat, smoke, and
ash, and formulates models to assess their impacts on power
lines, renewable energy sources, and vital electrical infras-
tructure that can aid in the management and adaptation of
the grid during wildfires. Similarly, [35] investigates how the
intense heat from wildfires affects the operational capacity of
power lines in their proximity, leading to potential disruptions
and degradation of the infrastructure.

Shifting the focus to power line-induced wildfire risk
assessment, a pivotal aspect of this study, the literature offers
different techniques and methodologies. Using historical data
as a foundation, [37] employs wildfire risk maps and pow-
erline locations to assess the risk of powerline-ignited wild-
fire ignition. Building upon the historical approach, [18]
integrates machine learning and past wildfire incidents to
formulate a time series forecasting model for estimating
the risk of wildfires in relation to power systems. Sim-
ilarly, [36] leverages machine learning models combined
with weather, vegetation, and terrain data to pinpoint wild-
fire risk probabilities in powerline-adjacent regions. Tech-
nical factors play a role in risk prediction as well. For
instance, [37] highlights a notable correlation between esca-
lating wind speeds and powerline system failures, which
can instigate wildfires. Delving deeper into predictive mea-
sures, [19] adopts a surrogate machine learning model to
anticipate wildfire ignition risks for individual powerlines
under extreme climatic conditions. Broadening the scope,
[38] integrates wildfire simulationwith forest landscape com-
position modeling, aiming to assess wildfire threats to a pow-
erline corridor. Finally, [39] merges historical insights with
real-time monitoring to devise a comprehensive method for
evaluating wildfire dangers within power transmission line
corridors.
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Despite the vast array of research, there remains a gap
for an integrated framework that combines deterministic sim-
ulations and analyses, geographical information, and grid
topology to assess the risk of power line-induced wildfires
towards other components as well as the susceptibility of
these components to wildfires. Additionally, there is limited
research on the incorporation of wildfire spread simulations
to analyze the impact of these incidents on the grid and quan-
tify the resulting damage. This paper bridges these gaps by
introducing a novel framework that merges a reliable wildfire
spread simulator, FARSITE [40], with power flow analysis
and analytical procedures. This approach evaluates the met-
rics of susceptibility, vulnerability, and risk of lines and nodes
in a power grid against power line-induced wildfires. The
framework is tested on a case study using the IEEE 30-bus test
system [41], a commonly used test system in power system
studies, mapped on a region in California. The proposed
framework is designed to support the planning, operations,
and maintenance of power grids, thereby enhancing grid
resilience and improving wildfire risk mitigation strategies in
regions highly susceptible to wildfires.

III. MODEL OUTLINE AND PROBLEM FORMULATION
The methodology for developing the framework in this study
consists of several steps that integrate a wildfire spread sim-
ulator with power flow analysis. The primary goal is to
quantify susceptibility, vulnerability, and risk, identify areas
prone to wildfires, and determine high-risk components. The
proposed steps are as follows:

A. CLOSING THE DATA GAP
The first step in our methodology involves the acquisition of
essential data sets, which are crucial for both the run of the
FARSITE simulator and the subsequent analysis of its impact
on the power grid. These datasets include grid topology,
weather conditions, and landscape data for the region under
consideration.

The first layer of the dataset consists of grid topology data,
which maps the structure of the power grid, detailing the
locations and connections of nodes and lines. This specific
information is crucial, not only for identifying which lines
might be tripped and which nodes could be impacted by the
spread of wildfires but also for analyzing how power flows
across the grid and how it may be affected by wildfire spread
in the post-simulation analysis.

The second layer encompasses weather data, which with-
out loss of generality could be historical, or synthetically
generated using statistical parameters for extreme conditions.
This feature data is a statistically significant predictor of the
ignition and spread of wildfires and includes factors such
as temperature, humidity, wind speed, and wind direction of
the investigated region which are all integral to accurately
simulating wildfire spread and behavior [40], [42]. Specifi-
cally, these parameters are essential inputs for the FARSITE
wildfire simulator, ensuring it captures the dynamic nature of
such incidents comprehensively.

The third layer comprises landscape and fuel data, essential
for capturing a realistic representation of wildfire behavior,
which includes topographic details of the landscape such
as elevation, slope, solar aspect, and barriers, along with
landscape fuel properties including fuel model, canopy cover
percentage, crown height, crown base height, and crown bulk
density. Each parameter plays a unique role in the behavior
and progression of wildfires [40]. For instance, elevation and
slope directly affect the speed and direction of fire spread,
with fires generally moving faster uphill due to the preheat-
ing of fuels positioned ahead the flames. The solar aspect
determines which part of the landscape is most exposed to
sunlight, influencing fuel dryness and, therefore, its com-
bustibility. Properties such as the fuel flammability model
and canopy cover percentage influence how easily a fire
will ignite and spread through specific types of vegetation.
The crown height, base height, and bulk density are crucial
for predicting the potential of crown fires, which rapidly
propagate through the canopy or treetops and cause spotting.
This can allow the fire to jump barriers and ignite new fires
away from the main blaze. As a comprehensive simulator,
FARSITE requires these detailed inputs to produce accurate
simulations that capture the complex behavior of wildfires.
Ensuring that this data accurately represents the region is
crucial for generating reliable wildfire spread simulations.
Fire spread calibration based on historic fires, as an important
step of using fire simulation systems, could potentially help
improve the results accuracy. Collecting these layers provides
a solid foundation for the subsequent steps of the methodol-
ogy.

B. WILDFIRE SCENARIOS GENERATION
The second step involves generating a diverse set of wildfire
ignition scenarios, simulating the conditions under which
hypothetical wildfires ignite and propagate. These scenarios
should be designed to cover a broad range of possibilities for
the system under study to thoroughly analyze the risks and
vulnerabilities of its components. As previously highlighted,
variations in weather conditions, such as wind speed and
direction, temperature, and humidity, can drastically alter
wildfire behavior. These variations must be incorporated into
the scenarios.

Furthermore, ignition locations must be strategically
placed along transmission lines and high-risk grid areas to
simulate power line-induced wildfire ignition. These points
can be positioned at equal intervals on the lines for systematic
coverage. Alternatively, by leveraging risk maps, additional
points can be placed in identified hotspots, emphasizing areas
with a higher likelihood of fire ignition. Considering the
historical patterns of ignition as well as historical fire weather
data could play a significant role in improving the accuracy of
the obtained results. These important factors will be discussed
and investigated in detail in a follow-up work.

This dual approach, which evaluates each potential igni-
tion location under varying weather conditions, forms
the foundation of our wildfire scenarios. It contributes
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to a comprehensive representation of potential power
line-induced wildfire behavior. This extensive suite of scenar-
ios facilitates an in-depth exploration of how wildfires might
interact with and impact the power grid, providing valuable
insights into system vulnerabilities and resilience.

FIGURE 3. The Multi-Layered Data Foundation for the Framework.

C. WILDFIRE SPREAD SIMULATION
In this step, wildfire scenarios and landscape data are fed
into the FARSITE simulator to determine the areas affected
by wildfire in each scenario. Developed by Mark Finney,
FARSITE models the spread of wildfires using a detailed
spatiotemporal and deterministic simulation process. The
modeling approach of FARSITE utilizes Huygens’ princi-
ple of wave propagation to simulate the advancement of
a fire front. The model incorporates several sub-models of
fire behavior, including surface fire, crown fire spread, fire
acceleration, fuel moisture, and spotting from torching trees.
All these calculations pertain to the perimeter of the fire,
primarily advancing the fire edge according to Huygens’
principle. FARSITE dynamically divides the simulation into
discrete time steps. Within each step, the model calculates
the progression and behavior of wildfire which is represented
as a continuously expanding polygon defined by a series of
vertices.

FARSITE structures its simulation through a series of
timesteps, wherein each timestep computes the growth of a
fire polygon by aggregating spread from its vertices. This
holistic growth is shaped by the fire’s Rate of Spread (ROS) at
each vertex of the fire edge. Beyond the ROS, FARSITE also
provides critical insights into other aspects of fire behavior.
These include the Flame Length, which offers an estimate of
the flame height and is crucial for understanding the potential

heat intensity and fire severity. The model calculates Crown
Fire Activity, indicating whether a fire is surface-based or has
transitioned into the canopy, a critical factor for predicting
fire spread in forested areas. Additionally, FARSITE outputs
the Fireline Intensity, which quantifies the energy output
along the fire front and is essential for fire suppression strate-
gies. Instead of using a fixed timestep, FARSITE dynamically
modifies it based on the distance resolution, which signifies
the furthest horizontal spread allowed before new landscape
data is required. To preserve the fire’s shape integrity, new
vertices are inserted between any two points on the simulated
wildfire perimeter that become excessively distant. This pro-
cess maintains a depiction of the fire that is consistent with
the model’s parameters and responsive to environmental vari-
ations, enhancing the simulation’s accuracy across diverse
terrains. However, like any deterministic simulator, FARSITE
can encounter inaccuracies, primarily due to challenges in
securing reliable input data with the necessary spatial and
temporal resolution [47]. Despite these challenges, FARSITE
has proven to be a robust tool, especially when equipped
with accurate data. It is recognized by numerous federal land
management agencies not only as an essential instrument for
predicting fire growth but also as a valuable resource for
broader fire management applications [42], [43].

Our choice of FARSITE for our framework is driven by
its proven reliability and its capability to model intricate
wildfire interactions in diverse terrains. The detailed output
from FARSITE simulations depicts the intensity, progression,
and extent of each wildfire scenario, identifying areas of the
power grid directly impacted by the wildfires. This provides
a detailed dataset for subsequent steps in the methodology.
Canopy height near powerlines can be used in the simulations
to assess potential impact. However, for simplicity, a 2D
perspective approach is leveraged in this paper. This topic will
be explored in detail in a future work.

D. IMPACT ANALYSIS
Following the wildfire spread simulation, a data-driven
impact analysis is conducted to evaluate the repercussions
of each scenario on the grid. The output from the FARSITE
simulator, which includes detailed wildfire perimeters, fire
intensity, and fire arrival time, is integrated with the spatial
coordinates of grid components. Through spatial analysis, the
lines and nodes exposed to the wildfire in each simulation
scenario are identified. These affected components represent
potential points of failure or disruption in the grid. The result
of this step is a comprehensive mapping of which grid com-
ponents are likely to be impacted in a given scenario, serving
as an input for subsequent steps in the methodology. Fig. 4
illustrates the spatial intersection of the simulated wildfire
spread output overlaid by the geographical layout of the grid,
showing the components directly affected by the fire. Canopy
height near power lines can be used in the simulations to
assess potential impact.
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FIGURE 4. Wildfire Simulation Output Mapped with the Grid Topology.

E. GRID MODIFICATION
Once the impacted lines and nodes are identified, the next
step involves modifying the grid’s component specifications
based on the results of the impact analysis for each scenario.
This modification is intended to simulate the changes in
the operational state of the grid due to the faults caused by
wildfires. For instance, a transmission line intersecting with
a wildfire may be considered damaged or at risk of failure
and thus may be rendered non-operational in the modified
grid. Similarly, nodes within the wildfire perimeter might
experience reduced capacity or total outage depending on the
extent of the fire impact. The extent of fire represents the
impact of wildfire on the power grid, resulting in potential
power outages. These modifications are then integrated into
the power grid model. This approach ensures that the subse-
quent power flow analysis considers the potential impacts of
wildfire in each scenario on grid operation.

To account for potential outages (i.e., load curtailment)
in the power flow analysis, virtual high-cost generators are
placed at each load node. These generators are considered
‘‘virtual’’ because they do not represent actual generators,
but rather function as negative loads to simulate a scenario
when the load cannot be fully supplied. These generators are
designated as ‘‘high cost’’ to reflect the undesirable nature of
power outages. Under normal operating conditions, the power
system is always inclined to utilize lower-cost actual power
generators. Resorting to these high-cost virtual generators in
the model signifies that the system is under stress and must
use more expensive means, here load curtailment, to maintain
a stable power flow. Therefore, they act as a useful tool in our
simulations to understand the magnitude of power outages
at each node under various wildfire scenarios and inform
the placement of real power sources, such as microgrids and
DERs, to increase resilience.

F. POWER FLOW ANALYSIS
In this phase, an AC optimal power flow (ACOPF) anal-
ysis is performed for each scenario on the modified grid.
The primary purpose of this analysis is to calculate the
steady-state operational conditions of the power grid post-

wildfire incident. The ACOPF problem can be stated mathe-
matically as an optimization problem with an objective func-
tion and several constraints. The goal is to minimize the total
cost of power generation while maintaining the systemwithin
its operational limits [44]. The formulation of the ACOPF
problem is as follows:

min
∑
i∈G

Ci
(
Pgi

)
, (1)

where Ci
(
Pgi

)
represents the cost of power generation by

generator i, and G is the set of all generators. The variables
for optimization are the real power and reactive power outputs
from each generator (Pgi and Qgi ), and the voltages at each
bus (Vn). The main constraints to be satisfied include power
balance, generation limits, and power flow constraints.

The power balance constraints (2) and (3) ensure that the
total generated power plus the power injected through trans-
mission lines equals the total demand, separately for both real
and reactive power, at each node. In mathematical terms:

Pgn + Pcn − Pdn + Pln = 0 ∀n ∈ N , (2)

Qgn + Qcn − Qdn + Qln = 0 ∀n ∈ N , (3)

where Pgn and Q
g
n are the real and reactive power generated at

node n, Pcn and Q
c
n are the real and reactive power generation

from high-cost generators at node n, Pdn and Qdn are the real
and reactive power demand at node n, Pln and Qln are the
real and reactive power flows injected to node n. N is the
set of all nodes. Each generator’s output should not exceed
its maximum capacity nor fall below its minimum as shown
in (4) and (5), respectively.

Pmini ≤ Pgi ≤ Pmaxi ∀i ∈ G, (4)

Qmini ≤ Qgi ≤ Qmaxi ∀i ∈ G, (5)

wherePmini ,Pmaxi ,Qmini , andQmaxi represent theminimum and
maximum limits for real and reactive power for generator i
respectively.

The voltage magnitude at each bus should stay within a
specified range to ensure safe and efficient operation (6),
where Vn is the voltage at node n, and Vmin

n and Vmax
n are

respectively the associated minimum and maximum permis-
sible voltage magnitudes.

Vmin
n ≤ |Vn| ≤ Vmax

n ∀n ∈ N , (6)

The power flow on each transmission line should not
exceed its rated capacity to prevent line overheating and
potential failures. The power flow equations for the lines
connecting different buses can be represented in terms of real
and reactive power flows. Considering the nodal voltages,
impedance, and the angle differences between connected
nodes, the line flow equations are:

Pnm=Vn
∑
k∈Nn

Vk (Gnkcosθnk+Bnksinθnk ) ∀n,m ∈ N , (7)

Qnm=Vn
∑
k∈Nn

Vk (Gnksinθnk−Bnkcosθnk ) ∀n,m ∈ N , (8)
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where Vn and Vk are the voltage magnitudes at buses n and
k respectively, θnk denotes the angle differences between the
voltages at buses n and k , Gnk and Bnk are the conductance
and susceptance of the line connecting buses n and k respec-
tively, and Nn represents the set of buses connected to bus n.
The line flow should also adhere to its limits:

Pminnm ≤ Pnm ≤ Pmaxnm ∀n,m ∈ N , (9)

where Pminnm and Pmaxnm are the minimum and maximum real
power flows for the line connecting nodes n and m, respec-
tively.

In this process, the use of virtual high-cost generators at
each node guarantees the feasibility of power flow, even
under the stress of component outages. Thus, the power flow
analysis produces a feasible solution and provides insights
into how the grid should optimally adapt and respond to the
impacts of wildfire incidents. The outcome of the ACOPF
analysis offers vital information on power flows, voltages,
generator outputs, and outages for each scenario. This data
reveals the power grid’s performance under different wildfire
conditions, helping in quantifying measures of susceptibility,
vulnerability, and risk.

G. DATA ANALYSIS
Once the power flow analysis is completed for all scenarios,
the next step is to analyze the obtained data to derive the
metrics, each represented as a dimensionless ratio.

1) SUSCEPTIBILITY
Susceptibility is defined as the potential of system compo-
nents, including lines and substations, to be affected by and
susceptible to ignition from the system’s powerline-induced
wildfires. The susceptibility of a particular node (Unode

n ) or
line (U line

j ) can be quantified by counting the number of times
it is affected across all scenarios.

Unode
n =

1
|Z |

∑
s∈Z

Ans, (10)

U line
j =

1∣∣Z̄ ∣∣ ∑
s∈Z

Ajs, (11)

where Ans and Ajs are binary values representing whether
node n and line j are affected in scenario (s) out of all sce-
narios (Z ). A line is considered affected when it falls within
the wildfire simulation’s perimeter, and a node is considered
affected when a line connected to it or the node itself is caught
in the perimeter.

2) RISK
Risk is defined as the expected operational impact on the
overall grid’s reliability and service continuity due to the
failure of a particular component (in this case, a transmission
line) which ignites a wildfire and leads to subsequent failures
within the grid. The risk associated with each line (Rj) is
calculated by taking the average of power outages ignited by

line j. In this equation Pojsn represents the amount of power
outage caused by line j in scenario s at node n.

Rj =
1∣∣∣Z ′
j

∣∣∣ |N |

∑
s∈Z ′

j

∑
n∈N

Pojsn
Pdn

, (12)

3) VULNERABILITY
The vulnerability associated with each node (In) is the degree
to which the node is susceptible to power outages, measured
as the average power outage at each node across all simulated
wildfire scenarios. It reflects the potential service disrup-
tion due to wildfires ignited by power lines within the grid.
In essence, vulnerability offers a holistic view of how a node
can be impacted by power outages across a set of wildfire
scenarios.

In =
1

|Z | |L|

∑
s∈Z

∑
j∈L

Pojsn
Pdn

. (13)

IV. CASE STUDY
The proposed methodology was implemented in a case study
utilizing the IEEE 30-bus test system, specifically mapped
onto a region in the Yosemite-Ritter section of the Sierra
Nevada in California. The study area, situated between lat-
itudes 37.6◦ and 38.1◦ and longitudes −120.7◦ and −120◦,
spans approximately 820,000 acres (331,840 hectares). This
region encompasses a diverse range of barriers and terrain
types, lakes, forests, and rural areas. This selection was
deliberate, as it allows for a comprehensive evaluation of
the methodology’s effectiveness in assessing the potential
impacts of power line-inducedwildfires in regions possessing
susceptible landscape characteristics. By including different
barrier types and terrain features, the case study provides
insights into the resilience of the grid in the face of wildfires,
considering the challenges posed by different geographical
conditions.

Landscape and fuel data were extracted with a resolu-
tion of 60 meters from LANDFIRE [45], a national initia-
tive committed to providing comprehensive geospatial data.
LANDFIRE’s scope covers vegetation, wildland fuel, and fire
regimes across the entirety of the United States, making it a
valuable resource for this analysis. In constructing wildfire
scenarios, we employed two types of weather datasets to
ensure a comprehensive analysis. The scenarios are designed
to cover a broad range of weather conditions, from baseline
weather patterns to more extreme situations, and include
placement of ignition points on each transmission line to
simulate potential wildfire initiation points due to power line
faults. The detailed breakdown of the scenarios is as follows:

A. IGNITION POINTS AND FIRE IGNITION AREAS
A total of 34 lines, comprising 702 kilometers, were analyzed.
Assuming a 1 km distance between fire ignition points, this
resulted in a total of 686 distinct ignition points. To further
define the ignition areas, a 30-meter buffer zone around the
ignition points along powerlines was established.
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FIGURE 5. Geographic mapping of the IEEE 30-bus test system in the
selected region.

B. HISTORICAL WEATHER CONDITIONS
The first set includes two historical weather datasets corre-
sponding to distinct seasonal conditions. Condition 1 rep-
resents the fall period, and Condition 2 represents the
summer period. These conditions are based on historical
weather data borrowed fromNational Renewable Energy Lab
resources [46], providing a realistic baseline for our simula-
tions.

C. EXTREME WEATHER CONDITIONS
The second set comprises four synthetically generated
datasets, each emulating severe extreme weather conditions
but with distinct dominant wind directions. Specifically, Sce-
narios 3, 4, 5, and 6 correspond to extreme conditions with
dominant wind directions to the North, East, South, andWest,
respectively. The scenarios were based on a common set of
weather parameters indicative of high wildfire risk, including
daytime temperatures averaging 35◦C fluctuating by a stan-
dard deviation of 2◦C, and nighttime temperatures averaging
20◦C with a standard deviation of 3◦C. Wind speeds were
considered to have an average of 40 km/hwith a 10 km/h stan-
dard deviation, and the wind direction was aligned with the
dominant direction with a standard deviation of 10 degrees.
The relative humidity was set at a low average of 10%
with a 5% standard deviation, reflecting the dry conditions
conducive to wildfires. Additionally, the scenarios accounted
for dead fuel moisture content with an average of 5% and
a standard deviation of 2%, highlighting the critical role of
fuel conditions in wildfire spread and intensity. Additionally,
these conditions were assumed to occur under clear sky days
with no cloud cover and no precipitation, further exacerbating
the wildfire risk.

This approach led to the generation of a set of 4,116 unique
scenarios, encompassing the combination of 686 ignition
points under 6 different weather conditions. The extensive
suite of scenarios ensures that our analysis captures a wide

range of potential wildfire risks to the power grid infras-
tructure. The landscape data used in this study can be found
in [40].

The FARSITE simulations were configured with a spatial
resolution of 60meters, matching the obtained landscape data
resolution, and a time step of 30 minutes, balancing detail
with computational efficiency. The simulations ran over a
burn period of 10 hours, spanning a total duration of 3 days.
The crown fire modeling employed the Reinhardt method,
and the ember spotting probability was set at 20%.

V. NUMERICAL RESULTS
Following the steps detailed in the methodology section, the
discussed metrics for the IEEE 30-bus test system are eval-
uated. In Tables 1-4, conditions 1 and 2 represent historical
weather conditions during fall and summer periods, respec-
tively. Scenarios 3, 4, 5, and 6 correspond to extreme condi-
tions with dominant wind directions to the North, East, South,
and West, respectively. MVA (Mega Volt Amperes) is the SI
unit for apparent power, representing the product of the root
mean square (RMS) voltage and current. MW (Megawatts)
is the SI unit for real power that measures the actual energy
conversion rate. The values presented in the following tables
are the result of calculating the metrics using the outcomes of
all 4,116 scenarios.

TABLE 1. Assessed values for susceptibility of lines.
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Based on the lines’ susceptibility values, lines 3, 5, 6, 7,
28, 30, and 41 stand out, consistently demonstrating the high-
est susceptibility across all weather conditions, with values
exceeding the upper quantile. Notably, line 38 in conditions 3,
5, and 6 also surpasses the upper quantile. Similarly, line 27 in
conditions 3 and 4, lines 26 and 25 in conditions 4 and 6, and
line 17 in conditions 3 and 6, display a heightened suscepti-
bility. These lines bear higher susceptibility to wildfire effects
due to their geographical location and proximity to other lines
with heightened fire spread probabilities.

TABLE 2. Assessed values for risk.

Lines 37, 8, and 10 are of the highest risk, each causing an
average of 6% of the system’s load being curtailed. Following
these, lines 9, 28, 38, and 39 also pose a significant risk,
with an average value of around 5%. Line 17 in condition 1,
line 20 in conditions 1, 4, 5, and line 40 in conditions 1 and 3,
are relatively high-risk lines. Line 34 maintains a consistent
mid-risk value across all weather conditions. These high-risk
lines indicate potential hotspots from which wildfire initia-
tion could result in severe cascading impacts on other lines
and nodes due to their strategic location and surrounding
available fuel conditions.

Nodes 10, 13, 14, and 15 exhibit a high susceptibility
of 0.48, implying they are directly impacted in nearly half
of the total 4,116 scenarios conducted. Nodes 2, 3, 8, and

TABLE 3. Assessed values for susceptibility of nodes.

16 also demonstrate significant susceptibility, with a value of
0.29. The high susceptibility of these nodes stems from their
interconnections and dependencies on multiple lines, which
increase their susceptibility to the impacts of wildfires.

Node 30 registers the highest average vulnerability
(0.064 for all weather conditions), followed by nodes 27 and
29 (0.036 and 0.038 on average, respectively). These nodes
represent the most vulnerable nodes in the system and are
strong candidates for reinforcement strategies, such as inte-
gration with microgrids.

Figs. 6 and 7 offer a geographical representation of the
metrics’ mean values across various weather conditions.
By integrating the data from the tables into a visual format,
the spatial representation highlights areas most susceptible
to wildfires and identifies critical infrastructure that need
retrofitting and reinforcement. This holistic view provides
stakeholders with a clear context, enabling them to grasp the
broader implications. In turn, they can strategically allocate
resources, implement mitigation measures, and devise pre-
ventive actions. Aligning strategies with zones of heightened
susceptibility, vulnerability, and risk ensures a reduction in
the potential for power line-induced wildfires and paves the
way for a more resilient power infrastructure.

Through this analysis, components with consistently high
susceptibility across different weather scenarios are identi-
fied. Especially during the summer period, represented by
condition 2, the grid is at an increased risk due to the
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TABLE 4. Assessed values for vulnerability of nodes.

season’s pronounced wildfire hazard. The combination of
elevated temperatures and decreased humidity creates drier
landscapes, making them more susceptible to both ignition
from potential grid-related sparks and the rapid spread of
any subsequent wildfires. This seasonal factor amplifies the
inherent susceptibility of certain lines and nodes. Moreover,
prevailing winds in conditions 3 and 6, directed towards the
north and west respectively, intensify the impact on specific
components. These effects arise from design considerations,
as well as interactions with regional topographical and vege-
tational factors. On the other hand, while condition 5, associ-
ated with wind directed to the south, may have a milder direct
impact on most components, lines 6 and 5 display the highest
susceptibility compared to other wind conditions. Thus, this
condition should not be overlooked.

Even minimal disruptions in such scenarios can result in
cascading effects within a tightly interconnected grid. In gen-
eral, lines 3, 5, 6, 7, 28, 30, 41, and nodes 10, 13, 14, and
15 emerge as the most susceptible to wildfires, attributed
to their strategic positions and interconnections within the
grid in all weather conditions. The failure of these compo-
nents could dramatically propagate the wildfire impact across
the grid, leading to considerable load shedding. As a direct
implication, these high-risk components should be targeted
for risk mitigation strategies to reduce the overall system
vulnerability. Conversely, nodes such as 30, 27, 29, 11, 17,
12, and 19, which register high outage rates during wildfires,

should be prioritized for reinforcement measures. Improving
the resilience of these nodes could significantly enhance the
system’s capacity to withstand and recover from wildfire
damages.

FIGURE 6. Visualization of Average Susceptibility and Risk of Lines.

This analysis offers a roadmap for power system planners
and operators, anchoring the design of apt resilience andmiti-
gation methodologies. Taking cues from the derived insights,
strategiesmight encompass the deployment ofmicrogrids and
virtual power plants. Additionally, vegetation management,
line undergrounding, and proactive asset upgrades and main-
tenance emerge as other viable countermeasures. The case
study demonstrates the proposed methodology’s effective-
ness in assessing the power grid’s components susceptibility,
vulnerability, and risk to wildfires. By identifying suscep-
tible, vulnerable, and high-risk lines and nodes, the study

VOLUME 12, 2024 112153



B. Sohrabi et al.: Wildfire Progression Simulation and Risk-Rating Methodology

enables informed decision-making on where to concentrate
investments for resilience and risk mitigation strategies.

FIGURE 7. Visualization of Average Vulnerabilities and Susceptibility of
Nodes.

Our reference to ‘‘strategic locations’’ and ‘‘surround-
ing available conditions’’ is derived from our observation
of the derived metrics across the grid and the landscape.
Specifically, the ‘‘strategic locations’’ refer to power grid
components—such as transmission lines and nodes—that,
due to their geographical positioning and connectivity within
the grid, have a higher susceptibility to wildfire risks. These
components are identified as having higher susceptibility and
risk values in our analysis, indicating their critical role in the
grid’s overall vulnerability to wildfires. The ‘‘surrounding
available conditions’’ encompass the combination of topo-
graphical and vegetational characteristics of the areas sur-
rounding these components. For instance, lines and nodes
identified with high susceptibility and risk values are often

located in regions characterized by dense vegetation or in
topographical corridors that can channel and accelerate wind-
driven fires.

VI. CONCLUSION
We proposed a wildfire risk rating framework that combines
a wildfire spread simulator, power flow analysis, landscape
data, and grid topology. This framework identifies the risk
from power lines and the potential vulnerability of inter-
connected components due to power line-induced wildfires.
It analyzes the grid’s susceptibility to wildfires, determines
the potential impact on the grid due to the failure of individual
transmission lines, and estimates power outages at each node
for a pre-defined set of wildfire scenarios. The IEEE 30-bus
test system was utilized for a case study to demonstrate the
capabilities of the proposed model. Findings suggest that this
framework can assist power system planners and operators
in making risk-informed decisions for their capital programs
and investments in resilience and risk mitigation efforts.

Existing results are based on quantitative studies consid-
ering network data and fire spread. Our analysis does not
directly use spread probability data; instead, it infers the
relative spread probabilities based on the extent of impact on
power lines. That is, a power line experiencing greater impact
suggests a higher wildfire spread probability in its area.

Furthermore, it is crucial to acknowledge the inherent
limitations and potential sources of error that must be con-
sidered. These include inaccuracies in user inputs, inherent
limitations of the models themselves, and the quality of
the data used, especially concerning landscape and weather
conditions. Notably, the use of wildfire spread simulators
like FARSITE introduces specific challenges, primarily stem-
ming from the complexity of accurately simulating wild-
fire behavior and the difficulties in securing reliable input
data with the necessary spatial and temporal resolution,
which can lead to inaccuracies in any deterministic simulator
[42], [43], [47].

Future enhancements of this framework will focus on
refining the accuracy of these variables, incorporating more
detailed historical fire regime data to strategically concentrate
ignition points around areas identified as high-risk based
on past wildfire occurrences, and enhancing modeling tech-
niques in the impact analysis step utilizing canopy cover
condition and power line height. Also, in our work, the
metrics for each transmission line are determined across the
entire length of the line. Adopting a more granular approach
represents a promising direction for future research. These
efforts aim to reduce potential errors and further enhance the
framework’s results reliability.
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