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A risk assessment framework for the future of 
forest microbiomes in a changing climate

C. E. Willing    1,2,7 , P. T. Pellitier    1,7 , M. E. Van Nuland1,3, 
J. Alvarez-Manjarrez    1,4, L. Berrios    1, K. N. Chin1, L. M. Villa    1, J. J. Yeam    1, 
S. D. Bourque5, W. Tripp5, V. O. Leshyk6 & K. G. Peay    1

Microbes inhabiting the above- and belowground tissues of forest trees and 
soils play a critical role in the response of forest ecosystems to global climate 
change. However, generalizations about the vulnerability of the forest 
microbiome to climate change have been challenging due to responses that 
are often context dependent. Here we apply a risk assessment framework 
to evaluate microbial community vulnerability to climate change across 
forest ecosystems. We define factors that determine exposure risk and 
processes that amplify or buffer sensitivity to change, and describe feedback 
mechanisms that will modulate this exposure and sensitivity as climatic 
change progresses. This risk assessment approach unites microbial ecology 
and forest ecology to develop a more comprehensive understanding of 
forest vulnerability in the twenty-first century.

Forest ecosystems cover approximately one-third of the Earth’s land sur-
face, harbouring immense biodiversity1 and supporting diverse human 
cultural needs and values2. Forests sequester over three-quarters of 
terrestrial carbon globally3; however, due to climate change and land 
use practices in the ‘Capitalocene’4, the functioning and persistence of 
forest ecosystems represents an area of critical scientific uncertainty5,6. 
Investigations of forest response to climate change have largely focused 
on tree demography and ecophysiology, satellite measurements and 
restructuring of forest community structure and function. Collectively, 
these studies indicate that fire, drought, increasing CO2 concentrations 
and rising temperatures imperil the health and carbon sequestration 
potential of forest ecosystems5,6. Improving understanding of forest 
responses to climate change is critical for effective policy and climate 
adaptation initiatives.

The forest microbiome mediates forest responses to a number 
of climatic stressors, including drought7, rising temperatures8 and 
elevated CO2 (eCO2)9. Microbiomes also play an important role in for-
est recovery from fire10,11 and hurricanes12, and microbes shape soil 
methane production and consumption13, as well as the ability of soils 
to sequester carbon14. However, there is now unequivocal evidence that 
forest microbial communities are vulnerable to climate change15–18, 

highlighting the need for their explicit consideration in efforts to 
predict the fate of forest ecosystems. Observational studies across 
local- to global-scale environmental gradients document how microbial 
community composition and function are locally adapted, and highly 
sensitive to prevailing climatological conditions17,19–22. In addition to 
observational inferences, experimental studies of microbial com-
munities across diverse forest environments demonstrate dynamic 
compositional and functional responses to climatic disturbances18. 
Because rates of microbial responses to disturbance may differ from 
those of forest trees, mismatches between plant communities, local 
climates and microbial communities can occur, with important impli-
cations for forest function23,24.

Forest microbes often exhibit strong context- and scale-dependent 
responses to disturbance25–27, challenging generalizations of microbi-
ome response to climate change. Accordingly, these context depend-
ences have stymied the effective incorporation of microbial dynamics 
into predictive models and understanding of forest ecosystems5,6,27,28. 
To address this knowledge gap and better predict and integrate micro-
biomes into a more holistic understanding of forest response to climate 
change, we adapt a risk assessment framework for forest microbiomes 
in the Anthropocene.
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cycling in forest systems35. Fungal and bacterial endophytes in roots 
and leaves can protect trees against pathogens36, promote drought 
tolerance44, influence host thermal tolerance36 and contribute to host 
N supply through N fixation45 (Fig. 1a). N-fixing bacteria have also 
been found in forest soils, leaves and leaf litter, as well as in associa-
tion with mosses and lichens, contributing to forest N availability and 
biogeochemical cycling46. In this Perspective, we especially focus on 
the bacterial and fungal components of the forest microbiome given 
available knowledge and their pivotal role in forest function34.

A risk assessment framework for forest 
microbiomes
Risk assessments are used to predict and manage the vulnerability 
of diverse systems by providing insights into where exposure may 
be reduced or sensitivity might be mitigated6,47. Because risk frame-
works have predominantly been used in macroecological contexts47, 
to utilize this framework we first define microbially relevant scales of 
exposure and attributes of microbial populations and communities 
that govern their sensitivity to climatic disturbance (Fig. 2)15,47,48. Then, 
we define important feedbacks that can inform the trajectory of forest 
microbiome responses to ongoing climate change. This framework 
intends to synthesize forest microbiome response to climate change 
to unite microbial ecology with macroecological understanding of 
forest responses to climate change6. While we specifically apply the 
framework in a forest ecosystem context, the principles should also 
be broadly applicable, and the framework is intended for diverse ter-
restrial ecosystems.

Exposure
The effects of warming, drought and other climatic disturbances vary 
across geographic and temporal scales6. We define exposure risk as 

Defining forests and their microbiomes
The Kyoto Protocol (1997) categorizes forests as areas greater than 
0.5–1.0 ha where the minimum ‘tree’ crown cover ranges from 10 to 
30%29. From the boreal to the Amazon, forest ecosystems span broad 
climatic regions6. Throughout these regions, trees scaffold and shape 
forest systems, giving rise to distinct habitats and microclimates for 
understorey species30. Trees are generally defined as plants capable of 
growing at least 2 m tall29, though their stature and architecture varies 
greatly by species31. Lifespans of trees are also highly variable across 
taxa, ranging from 25 to over 5,000 yr (ref. 32). The architectural, demo-
graphic and ecophysiological characteristics of trees are predicted to 
play important roles in forest responses to climate change5,6.

The forest microbiome—a rich diversity of bacteria, archaea, fungi, 
lichens and viruses—supports plant productivity and forest function 
across the globe33–35 (Fig. 1a). Forest ecosystems are among the most 
biodiverse microbial habitats on Earth. For example, individual leaves 
can host hundreds of bacterial and fungal taxa36, and tens of thou-
sands of microbial species inhabit forest soils37. Forest microbes span a 
range of interaction types, including pathogens and mutualists. These 
microbes cumulatively facilitate nutrient cycling35,38 and impact plant 
community structure by mediating plant coexistence and diversity39–41. 
Key microbial groups in soil include saprotrophic fungi and bacteria, 
which drive decomposition and soil carbon accumulation42. Sapro-
trophic microbes mediate soil nutrient availability by mineralizing 
organic nitrogen into plant-available inorganic forms42,43. Other key 
groups include ancient interactions between tree roots and mutualistic 
mycorrhizal fungi, such as arbuscular (AMFs) and ectomycorrhizal 
fungi (EMFs), which shape host environmental tolerances8 and rep-
resent an important component of nutrient acquisition strategies for 
trees19 (Fig. 1c). Similarly, mutualistic relationships between roots of 
certain tree species and N-fixing bacteria influence biogeochemical 
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Fig. 1 | The forest microbiome in a changing climate. a, The exceptionally 
diverse forest microbiome colonizes nearly every surface and plant tissue of the 
forest. Distinct MSNs occur throughout the forests, depicted with dashed yellow 
circles. Major microbial groups and associated MSNs include the following. 
(1) and (2) foliar endophytes and epiphytes (bacteria and fungi) (1) within the 
forest canopy (2). (3) N-fixing free-living bacteria occur in soil. (4) Forest gaps are 
unique microhabitats within forests. (5) AMFs, EMFs and the associated myco-
rhizosphere dominate in soils. b, Heat stress and drying associated with climate 
change will shift the community structure and function of the forest microbiome. 
A reduction in available water is depicted by the reduction in the blue speckles 
throughout both panels. (6) Wood and litter decomposers in soil (bacteria, 
archaea and fungi). Free-living soil microbes (bacteria, archaea and fungi) occur 

in soil and in decaying wood. (7) N-fixing bacteria may be free living or root or leaf 
associated. (8) Forest canopy gaps can be particularly deleterious for microbial 
communities under climate change. (9) Filamentous soil bacteria. (10) N-fixing 
bacteria associated with plant roots. c, Distinct mycorrhizal symbioses are 
associated with major forest biomes where they influence biogeochemical cycles 
and forest responses to climate change. Boreal forest ecosystems are dominated 
by EMFs; some EMFs may enzymatically degrade soil organic matter to obtain 
organic forms of N, which influences host nutrition. Contrastingly, in tropical 
forest ecosystems, the majority of plants are associated with AMFs, which 
efficiently scavenge nitrate (NO3

−) and phosphate (PO4
3−) from soil solution.  

The relative abundance of AMF and EMF hosts is more variable in temperate 
forest ecosystems.
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the probability that climatic disturbance will extend beyond physical 
baseline conditions enough to impact forest microbiome community 
structure or function. Accordingly, quantifying climatic exposure risk 
for the forest microbiome depends on the integration of three different 
components of climatic disturbance: disturbance type, spatiotemporal 
scales of disturbance, and capacity for physical buffering of disturbance 
across microbial habitats.

Categorizing climatic disturbances
The persistence of forest systems is threatened by the increasing  
frequency and severity of climatic disturbance6. Different types of 
perturbation associated with a changing climate can be categorized in 
a pulse–press framework to understand their potential impact across 
spatiotemporal scales and intensity of disturbance15,49. Disturbances 
such as eCO2 and rising air temperatures represent press events, dis-
turbances that are ongoing and relatively slow49. Press disturbances are 
predicted to select for microbial traits associated with greater physio-
logical plasticity and niche breadth (tolerance), and strong acclimation 
or rapid adaptation will be required to maintain community composi-
tion as a result of continuing disturbance15,16,50. Conversely, pulse events 
are discrete disturbances, including droughts, hurricanes, floods or 
wildfires49. Pulse disturbances tend to favour microbial community 
traits associated with rapid recovery (often referred to as resilience)15. 
Though pulse disturbances such as forest fires can initially reduce soil 
fungal and bacterial biomass and diversity51,52, they have a defined 
end period, in some cases allowing microbial communities to eventu-
ally recover parts of their original structure and function15. However, 
recovery of microbiome function following pulse events is variable and 
can take as long as several decades10. While the pulse–press framework 
is conceptually useful for comparing and synthesizing the physical 
impacts of diverse climatic stressors on organisms and communities, 
it is important to note that press and pulse disturbances increasingly 
act in tandem53.

Consideration of microbial lifespan and life-history strategies 
are essential to contextualizing exposure risk15. For instance, some 
long-lived soil fungi can persist for years to decades54, whereas many 
co-occurring soil bacteria turn over on the order of hours or days in 

response to drought55. As a result, while a multi-month drought may 
represent a pulse disturbance for a tree or long-lived fungus, droughts 
typically impact many generations of ephemeral fungi or bacteria15. 
Consequently, bacteria and some fungi may undergo rapid evolution 
in response to pulse disturbances, whereas evolution for some fungi 
may occur over longer timescales56.

Climatic disturbances can act either directly on microbial cells, 
or through indirect pathways. For example, drought and rising tem-
peratures can directly stress microbial cells55,57. In contrast, eCO2 
indirectly impacts soil communities, primarily via shifts in substrate 
availability58,59. Greater C allocation of trees belowground in response 
to eCO2 can increase colonization of roots by both EMFs and AMFs, and 
result in greater rhizodeposition, increasing the availability of carbon 
substrates to microbes60,61. Tracing the various pathways whereby 
climatic stressors directly or indirectly impact microbial communities 
will be critical to accurately projecting the magnitude of community 
responses.

The spatial and temporal nature of climatic disturbances
The type, intensity, frequency and timing of disturbances varies 
markedly across forest biomes6,18 (Fig. 3). Catastrophic droughts, 
flooding and severe hurricanes affect tropical forests, while reduced 
snowpack and permafrost melt threaten boreal and high-elevation 
forest systems62. In many temperate forests, drought and rising 
temperatures compound with settler-colonial fire suppression to 
create fires of increasing frequency and intensity63. Increasing fre-
quency and spatial extent of disturbance threaten the capacity of 
microbial communities to withstand and/or recover their predistur-
bance community structure64, and shifts in pathogen ranges, includ-
ing bark beetle and invasive microbial diseases, can result in mass 
tree mortality, jeopardizing forest persistence in some systems7,65. 
Importantly, the intensity of disturbance will also vary across for-
est biomes. The rate of warming, for instance, differs across the 
globe, with boreal forest temperatures projected to increase at 
approximately twice the rate of other forests66 (Fig. 3a,b). As a result, 
microbiome exposure to warming is probably greater in boreal  
forest ecosystems62.
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Fig. 2 | An organizational framework for studying forest microbiomes in 
a changing climate. Together, the sensitivity and exposure risk of microbial 
communities determine their overall vulnerability to climatic disturbance. 
Subsequent feedbacks may exacerbate or buffer subsequent microbial 
responses to climate change. We define climatic exposure as the cumulative 
severity of disturbance. Microbial community exposure is broadly shaped by 
the disturbance type, spatiotemporal scale and attributes of the microbial 

microhabitat. Microbial sensitivity describes the degree to which microbial 
fitness or community structure and function is impacted by climatic disturbance. 
Broadly, microbial traits, niche attributes and the climatic history of a forest 
can impact the sensitivity of a taxon or community. Finally, climatic feedbacks 
represent an array of processes, spanning from macroscale biogeochemical 
processes to plant–soil feedbacks, that modulate future microbial exposure and 
sensitivity (dashed arrows).
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For pulse-type disturbances, the timing of a disturbance also 
influences microbiome exposure risk, especially for forests with strong 
seasonality (Fig. 3c). For example, spring fires result in greater reduc-
tions in fungal saprotrophic diversity when compared with fires of 
similar severity that occur in autumn67. One hypothesis is that spring 
fires are more damaging for microbial growth and reproduction than 
fires that occur during periods of higher microbial dormancy67. Climate 
change will continue to advance the onset of summer and spring, 
while autumn and winter seasons are expected to be shortened and 
delayed68. Thus, longer periods of microbial activity may increase 

the probability of greater impact of pulse disturbances on microbial 
community structure and function. Additionally, autumn is an espe-
cially critical ecological period, especially for many fungi, as this is 
when they transition from high periods of activity to reproduction69. 
Scarce datasets in Western science track long-term shifts in micro-
bial reproduction, making generalizations about shifts in fruiting 
phenology associated with climate change challenging70,71. However, 
many Indigenous communities have been observing patterns and pro-
cesses of fungal phenology for thousands of years72. For example, the 
Karuk tribe (Northern California, USA) has demonstrated how delays 
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Fig. 3 | Scales of forest microbiome exposure to climate change. a, Examples 
of three forest biomes (boreal, temperate broadleaf and tropical) and the relative 
distributions of different forest types across the globe. Inset photographs are 
representative examples of major forest biomes. b, Exposure risk varies across 
these three broad forest biomes. Here we compare the mean temperature in 
the warmest quarter from 1970–2000 with the values predicted for 2061–2080 
on the basis of Coupled Model Intercomparison Project Phase 5 from the 
Intergovernmental Panel on Climate Change Fifth Assessment Report in 2014. 
Three representative forest sites are reported. The predicted warming is based 
on the intermediate scenario where the concentrations of greenhouse gases 
are based on the representative concentration pathways (RCPs) assuming 
that emissions will peak in 2040 (RCP 4.5). Below, the line plot denotes the 

mean monthly temperature fluctuations throughout the year for these same 
plots from 1970 to 2000, indicating that microbes from these habitats are 
adapted to different temperature fluctuations and are liable to demonstrate 
varying sensitivity to climate change as a result. c, The deviation of monthly 
mean minimum and maximum temperatures (seasonality) across these three 
representative forest sites, compared with the annual mean annual temperature. 
d,e, Temperature fluxes in microbial microhabitats (MSN) are poorly captured 
in measurements of air temperature. d, Temperatures across the different forest 
microclimates for a representative forest in a Costa Rican lowland tropical forest. 
e, Soil temperatures across different depths for a hypothetical soil, indicating 
unique microclimates that influence microbiome exposure.
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in autumn (higher temperatures continuing into October/November 
and later rainfall) lead to declines in ectomycorrhizal fruiting, with 
important consequences for the communities and ecosystems these 
fungi help to sustain73 (Box 1). Indigenous science has a critical lens 
into how climate change is shaping forest ecosystems as its period 
of observation extends back tens of thousands of years; the centring 
of Indigenous-led science will be critical in better understanding and 
managing forest systems in a changing climate74.

Microclimates, microhabitats and microbe-specific niches
The physical structure of forest ecosystems plays an underappreciated 
role in determining the exposure risk of different microbial communi-
ties to climatic disturbance (Fig. 3d). Due to their immense structural 
complexity relative to other terrestrial ecosystems, different locations 
in forests confer varying degrees of physical buffering from climatic 
disturbance30. Throughout the forest canopy, light, temperature and 
moisture conditions vary markedly75,76. Microbes associated with differ-
ent forest compartments (for example leaves versus roots) experience 
varying degrees of physical buffering (Fig. 3d,e) and have different 
inherent exposure risks to climatic disturbances. To distinguish these 
from the physical structures that hosts can evolve to spatially separate 
symbionts (compartmentalization), herein we refer to these different 

microbial habitats (leaves, roots, soil and so on) as microbe-specific 
niches (MSNs)34.

Plant hosts can also actively and passively modulate microbiome 
exposure. For example, bacterial communities associated with roots 
of Sequoia sempervirens are less sensitive to water deficit than are 
those in soil, potentially due to consistent water availability in roots22. 
In Eucalyptus, latent cooling through evapotranspiration reduced 
leaf temperatures by up to 7.5 °C relative to air temperatures during a 
heatwave77, helping to buffer heat exposure for phyllosphere and endo-
phyte microbial communities. Active cooling via evapotranspiration 
may also help to explain how foliar endophyte communities associated 
with Pinus ponderosa can maintain community structure whereas 
root-associated microbial communities are reshaped by higher tem-
peratures78. The soil matrix can also buffer microbiome exposure. 
For example, the composition and diversity of bacterial and fungal 
communities in the soil surface (0–5 cm depth) are often strongly 
impacted by fire, but heat from surface fires attenuates rapidly with 
soil depth, suggesting that deeper soils may act as a potential refugium 
for microbial communities79 (Fig. 3e).

Canopy gaps also create distinct microclimates (Fig. 3d). These 
gaps are warmer and drier, and consequently distinct wood decay 
fungal communities inhabiting them exhibit reduced rates of decom-
position80; similarly, canopy gaps may reduce the local diversity of EMF 
communities81. In xeric systems, removal and management of under-
storey plants through practices such as cultural burning can increase 
soil water content and nutrient availability82, providing important 
habitat for plant and microbial communities by reducing understorey 
plant competition83. However, extensive habitat fragmentation (due 
to logging or large-scale climatic disturbances such as stand-replacing 
fires or hurricanes) may exacerbate forest warming through reduced 
shading and evapotranspiration, further threatening forest commu-
nities. Altogether, the unique buffering capacity of distinct MSNs 
suggests that microbiome community structure and function could 
shift at different rates across leaf, root and soil communities, poten-
tially causing dysbiosis for tree hosts84. Exploring how different MSNs 
combine to collectively influence plant health remains an intriguing 
area of future research.

Sensitivity
In the broadest terms, sensitivity describes the intrinsic factors that 
determine how a community, species or individual is impacted by cli-
matic disturbance47. At the community scale, sensitivity describes 
the degree to which microbial community composition or function 
responds to disturbance and its capacity to recover composition or 
function after the disturbance (Fig. 4a)85. At the species and individual 
scales, low sensitivity indicates the persistence of a taxon or individual 
or its capacity to recover physiological function following a short-term 
disturbance85. Here, we identify and describe evolutionary and ecologi-
cal processes that modulate the sensitivity of microbial populations 
and communities.

Global variation in the sensitivity of microbial communities
Surveys across continental and global scales have identified strong 
biogeographic patterns in microbial communities, with high degrees 
of endemism (for some taxonomic groups) and unique functional 
trait profiles across the major tropical, temperate and boreal forest 
biomes21. This suggests that climatic disturbances may result in diver-
gent responses for microbial communities inhabiting different biomes 
or habitats. The biogeographic patterns in microbial communities 
result from prevailing climatic regimes (for example, mean annual 
temperature)21, geochemical attributes (for example, parent mate-
rial, pH, Ca)86, different evolutionary origins of microbial taxa87 and 
the composition of forest tree species88,89. Additionally, limitations 
to microbial dispersal can drive distinct community90 and popula-
tion structures91.

Box 1

chí xáyviish nushtúkkareesh 
(Let’s go and pick mushrooms!)
Due to limitations in the extent of microbial natural history 
records in Western science, the study of microbial response to 
climate change presents many challenges. Consequently, studies 
of fungal fruiting phenology, for instance, have largely been 
restricted to temperate forests in Europe over the past several 
decades using herbarium collections70,71. By contrast, Indigenous 
communities, including the Karuk Tribe in Northern California, 
USA, have been documenting patterns of fungal fruiting 
phenology for thousands of years. For example, Tricholoma 
magnivelare, known as matsutake, or xáyviish in the Karuk 
language, is an important EMF species used not only as a food 
and medicine, but also as an indicator species of forest health. 
Until recently, xáyviish has been accessible and abundant for the 
Karuk people. However, Karuk Cultural Practitioners describe 
how, while substantial early rains in September stimulate xáyviish 
development, when seasonal rainfall is delayed as is happening 
more frequently with climate change (first substantial rain 
occurring in November) mushroom development ceases for  
the year.

While the impacts of a long-term decline in xáyviish fruiting 
are not fully known, declines in fungal fruiting may have 
consequences not just for the fungal taxa themselves, but also 
for the establishment of seedlings and persistence of forests 
and the many organisms they support40. For instance, deer and 
elk rely on xáyviish in the autumn, during their own reproductive 
periods73. For Karuk people, “Karuk traditional knowledge cannot 
be separated from either the practices that generated the 
knowledge, or the practices that emerge from it. These practices, 
known as ‘traditional management’ are, in turn, central to Karuk 
culture, identity, spirituality and mental and physical health”73. The 
centring of Indigenous voices and acknowledgement of Indigenous 
sovereignty will be critical towards a more in-depth understanding 
of forest (including forest microbiome) response to climate change.
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In the face of climatic change, varying sensitivity of microbial com-
munities can result in several response scenarios: tolerance (resistance 
to climate disturbance92), recovery (initial change followed by return 
to original abundance or community structure93) and transition (that 
is to an alternative state15,50 (Fig. 4a). There is growing consensus that 
communities that have experienced greater historical environmental 
fluctuations will be more likely to tolerate future disturbance50,94. For 
example, forest biomes in which temperature fluctuations are relatively 
large, as in high-latitude forests, exhibit relatively small compositional 
changes when exposed to warming when compared with lower-latitude 
forests95,96. Similar patterns of tolerance have also been observed for 
short-lived disturbances such as drought. In temperate forests, regions 
with lower historical precipitation select for microbial communities 
with higher tolerance to acute drought92, including Actinobacteria, 
Firmicutes and Thaumarchaeota22,97. Historical legacies of water avail-
ability also correspond to drought tolerance for microbes in tropical 
forests: in forests where drought treatments had been experimen-
tally imposed, tropical microbial communities experienced less pro-
nounced shifts in community composition when compared with the 
controls with no previous drought exposure98.

Community recovery potential also appears to vary across biomes 
with different disturbance regimes. In forests where fire is histori-
cally common, microbial taxa and even whole microbial communities 
recover rapidly, even from severe disturbance99–102. Microbial com-
munity recovery is facilitated by an initial increase in fire-specialized 
taxa51. For example, spores of a root-associated EMF species (Rhizo-
pogon olivaceotinctus) nearly double their colonization potential 
following heating103, and soil-dwelling Arthrobacter bacteria experi-
ence post-fire population booms51. These pyrophilous microbes may 
facilitate recovery of the original community by breaking down hydro-
phobic or pyrolysed organic matter99. Importantly, early successional 
microbes are generally poor competitors that do not appear to prevent 
re-establishment of the initial community104. In contrast, for forest 
ecosystems adapted to less frequent fire regimes and having fewer 
pyrophilous community members, populations of both saprotrophic 
and mutualistic microbes are heavily reduced after fire and appear less 
likely to recover their original state52,100 (Fig. 4a).

The impacts of increasing frequency of disturbance and com-
pounding disturbance types might be exceptionally stressful for 
microbial communities, potentially impeding community recovery 
and leading to a transition to alternative states105. More frequent distur-
bances are especially likely to result in functional collapse and transi-
tion in microbial ecosystems64. For example, while microbial recovery 
potential appears high in fire-adapted landscapes, fire regimes are 
shifting rapidly6. In fire-adapted Eucalyptus pilularis forests of Aus-
tralia and coniferous forests in the Western United States, fire-adapted 
microbial and lichen communities appear less likely to recover with 
increases in fire frequency106, especially when combined with periods 
of intensifying drought stress101 and emerging infectious disease107. 
Microbial community transitions are also predicted where distur-
bance results in novel environmental conditions. For example, rising 

temperatures decrease climatic controls on rates of decomposition, 
leading to predicated transitions from EMF- to AMF-dominated forests, 
especially at boreal–temperate ecotones19.

Studies documenting microbial community tolerance, recovery 
or transition may not necessarily correspond to identical shifts in 
microbiome functioning. This decoupling could arise due to processes 
of microbial acclimation to warming via physiological shifts in cellu-
lar processes108. Similarly, high degrees of functional redundancy in 
microbial communities could result in modest or nonlinear functional 
responses despite strong community shifts. Relative decoupling of 
composition–function relationships could also vary across forest 
biomes if historical environmental fluctuations exert a strong impact 
on community sensitivity and a more variable impact on functional 
sensitivity. Accordingly, in boreal forest soil communities, prolonged 
warming may trigger moderate community shifts (tolerance) and a 
temporarily increased but progressively weakening effect on soil res-
piration due to microbial acclimation109. This response contrasts with 
observations of accelerating community and respiration responses in 
experimentally warmed tropical forests95. Sufficient temporal infer-
ence is lacking to fully describe these relationships, and further work is 
required. We stress that community tolerance, recovery and transitions 
represent operational definitions; the linkages between community 
composition and microbiome function remains one of the most critical 
areas of ongoing investigation110.

Variation in sensitivity across microbe-specific niches
Microbes are adapted to distinct environmental fluctuations and 
resource availabilities across MSNs and therefore exhibit unique 
sensitivities among these habitats34,111,112. For example, wood decay 
fungi such as Phlebiopsis and Phellinus exhibit optimal growth tem-
peratures that vary across biogeographic ranges but generally fall 
between 20 and 28 °C, with growth declining rapidly above 30 °C 
(ref. 113). By contrast, the surface of sunlit leaves can frequently 
exceed 30 °C (ref. 114) and leaf-inhabiting microbial endophytes are 
adapted to higher temperatures; many of these endophytes, includ-
ing Burkholderia, Acinetobacter and yeasts such as Rhodotorula, are 
regularly cultured at 30 °C (ref. 115). There is evidence that microbes 
found in highly diverse MSNs such as soils may be more tolerant as 
compared with leaf or root communities116. Accordingly, the poten-
tial for microbial communities to respond asymmetrically across 
MSNs, especially above- and belowground, is an important area of 
future investigation3. Studies of potential dysbiosis among MSN and 
functional consequences for hosts are critical in elucidating forest 
sensitivity to climate change117.

In addition to inhabiting unique physical niches in trees and forests 
(for example in roots versus leaves), microbial host dependence is 
another important dimension of MSNs. While some microbes are free 
living, others are facultatively or obligately host associated and exhibit 
varying degrees of host specificity34. For obligately host-associated 
microbes or those with high host specificity, the persistence of host 
plants is a minimum criterion for the presence of suitable MSNs118,119.  

Fig. 4 | Microbial sensitivity and underlying traits and trade-offs. a, Microbial 
communities exhibit temporally variable responses to climatic disturbance 
(dashed line and grey bar): minimal shift in community structure (tolerance), 
recovery to predisturbance conditions after some recovery period (recovery) 
or a permanent shift in community structure (transition). Notably, these 
dynamics could vary across forest biomes (different coloured lines). Underlying 
each response dynamic is a specific example shown below for different 
disturbance types and microbial communities. b, Trait trade-offs mediate 
microbial sensitivity to hypothetical drought stress for rhizosphere bacterial 
taxa (Bradyrhizobium, Bacillus, Streptomyces). Under ambient conditions, 
resource abundance may select for taxa with high growth yields (Y) and reduced 
investment in stress tolerance. In contrast, in periods of resource limitation, 
taxa that can rapidly acquire resources, using extracellular enzymes (A) may 

dominate. Under drought conditions (or other climatic disturbances), stress 
tolerance (S) or stress-tolerant–resource-acquisitive (S-A) strategies may 
dominate. We also show an example of how bacterial life-history trait trade-
offs can be geographically structured. Trade-offs related to high growth yield 
(orange) and resource acquisition (green) are expected to vary across a gradient 
of water availability; traits associated with resource acquisition may be favoured 
in drier conditions. Hypothetical microbial communities are plotted across 
the coast redwood range of California, USA, where the northern part of the 
redwood range receives twice as much annual rainfall as the southern extent. 
Consequently, microbes that tolerate water deficit are more abundant in the 
southern extent of the redwood range whereas microbes with high resource 
acquisition are more abundant in the wetter part of the range.
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For some obligate host associates, an effective tolerance strategy 
may be to improve host survival of the same disturbance120. By con-
trast, where microbial associations increase mortality risks of their 
hosts, a decline in available hosts to infect may render these microbes 
more sensitive to climate change. For example, white pine blister rust 
(Cronartium ribicola) increases host mortality at low elevations dur-
ing drought, thereby decreasing the population of its available hosts 
(alongside rates of infection)7.

Traits and trade-offs that structure microbial sensitivity
Particular microbial traits predispose microbes to heightened climatic 
sensitivity because of the way in which trait trade-offs interact with 
climatic perturbation22,51,121,122. Trait trade-offs have been observed 
for bacterial48 and fungal taxa, such as EMFs123, in response to diverse 
disturbances, including water deficit22, warming124 and fire51,102. For 
example, trade-offs in bacterial suitability to post-fire habitability and 
competitive abilities have been observed102. We expect that investiga-
tions exploring the identity and function of specific traits influencing 
microbial sensitivity at both the taxon and community scales will be 
an especially active area of future research.

Climatic disturbances could impact microbial physiology, as well 
as community composition and function. Trait trade-offs between 
microbial growth yield (Y), resource acquisition (A) and stress tolerance 
(S) broadly define microbial sensitivity to climatic perturbation (the 
Y–A–S framework; Fig. 4b)48. When climatic disturbance drives resource 
limitation, such as during drought, microbes exhibit trade-offs between 
traits associated with microbial resource acquisition and growth 
yields16,48. This has been observed for soil bacteria across a natural 
gradient of water deficit, where filamentous Streptomyces bacteria 
associated with S. sempervirens root communities dominate in dry 
soils, but unicellular flagellate bacteria such as Bradyrhizobium are 
more dominant in wetter soils (Fig. 4b)22. Filamentous lifestyles excel 
at resource acquisition by scavenging a larger soil volume, whereas 
flagellate bacteria have higher growth yields, but are dependent on 
saturated soils for motility and access to soil resources55.

Traits associated with stress tolerance are also important to micro-
bial persistence during climatic perturbation48,55,124. For example, expo-
sure to acute drought resulted in an upregulation of genes associated 
with cell wall and membrane maintenance, but an overall reduction 
in gene expression and resource acquisition in foraging hyphae for 
the EMF fungus Suillus pungens123, probably impacting its cellular 
tolerance of stress and resource acquisition. Similar cellular trade-offs 
also appear to apply for rising temperatures. A study of long-term soil 
warming in the Alaskan boreal forest found that genes associated with 
cellular maintenance were upregulated when compared with genes 
associated with microbial resource acquisition and growth124. Cellular 
dormancy is another important facet of microbial stress tolerance 
and could be a common strategy for members of the forest microbi-
ome51,125,126. Due to larger intracellular investment costs, dormancy 
appears to have important trade-offs with capacity for vegetative 
growth rates48,51,102. While little is known about cross-forest biome varia-
tion in the distribution of cellular dormancy, dormancy and sporulation 
could be particularly common in forests that experience large seasonal 
climatic fluctuations or frequent pulse disturbances15,94,125. Soils expe-
riencing frequent fire are enriched in endospore-forming firmicute 
bacteria10,102, and mycorrhizal fungi that form resistant spore banks 
may possess an early competitive advantage after fire126.

Feedback mechanisms that amplify or buffer 
vulnerability
Feedback processes can either amplify or buffer microbiome sensitivity 
and exposure to future climatic disturbance47. Feedbacks within for-
est systems play an under-recognized role in determining the vulner-
ability of the microbiome to future climate change. Here, we outline 
several pathways where biogeochemical, climatological and biotic 

feedbacks could modify forest microbiome vulnerability to future 
climatic disturbance.

At the largest scales, shifts in forest microbiome structure and 
function will influence critical biogeochemical cycles. For example, 
trees that associate with N-fixing microbial symbionts are favoured 
under increasingly dry forest conditions127. However, the dominance 
of N fixation in arid soils has also been linked to the release of NOx, 
a potent greenhouse gas128. As a result of NOx release, warming and 
drying are likely to be amplified, increasing the exposure of forests 
and their microbiomes to further disturbance. Similarly, increasing 
temperatures are poised to stimulate the decay of soil organic matter 
by microbial communities, particularly in high-latitude soils14. The 
substantial release of CO2 from increasing rates of microbial activity 
will result in a positive climate feedback loop, further exposing forest 
systems to higher temperatures in the future. Increased rainfall in 
certain tropical regions can also substantially shift biogeochemical 
cycles by stimulating microbial methane production, the release of 
which can further accelerate rising temperatures and other climatic 
disturbances; this is especially pronounced after deforestation has 
occurred13. eCO2 has significantly increased the strength of the terres-
trial C sink. This sink is contingent on the sustained nutrient-foraging 
attributes of mycorrhizal symbionts and their ability to stimulate plant 
growth3,9. However, for trees associated with EMFs, enhanced plant 
investment in fungal mutualists under eCO2 could reduce soil C stocks, 
with uncertain consequences for ecosystem C balance. Moreover, 
increased EMF foraging under eCO2 could alter substrate quality for 
free-living bacteria and fungi3, thereby influencing nutrient mobiliza-
tion and potentially plant nutrition. Long-term observations of shifts in 
leaf and root litter stoichiometry potentially support altered nutrient 
availability resulting from shifted microbial functioning129. In addition 
to eCO2 effects, long-term shifts in soil substrate availability and quality 
could also occur due to drought stress or increased fire frequency130, 
with similar consequences for microbial functioning, plant productiv-
ity and drawdown of atmospheric CO2.

Climatic disturbances that restructure plant communities or 
impact plant ecophysiology will also create feedbacks that impact 
future microbiome exposure and sensitivity. Warming, drying and 
increased fire frequency and severity are hypothesized to increase 
the activity, abundance and pathogenicity of certain bacteria and 
fungi101,131. Increased pathogenicity partially results from climatic 
release where higher winter temperatures increase winter survivorship 
for pathogens132. Increased pathogen abundance can hasten forest 
compositional turnover for trees already stressed due to changing 
climate. As climatic niches for EMF and AMF hosts shift with climate 
change, AMF-associated hosts are predicted to become more dominant 
in temperate systems133. Because EMF-associated trees are thought to 
have higher resistance to root pathogens due to physical protection 
conferred by hyphal mantles surrounding the host roots39, increased 
root pathogen abundance may interact with other microbial guilds 
such as AMFs or EMFs to generate plant compositional feedbacks39. 
The potential for transitions between plant communities dominated 
by different mycorrhizal associates will have consequences for nutrient 
cycling19, soil water retention134 and forest structure and diversity135.

Finally, as microbial responses to climate change will influence 
plant community coexistence and competition dynamics8,41, shifts in 
forest community structure may generate additional feedbacks for 
microbial communities. Similarly, climatic processes that alter plant 
community diversity or function could have knock-on effects that 
mediate the vulnerability of the microbiome to future disturbance. 
For example, drought can destabilize plant community coexistence 
in forests through modification of plant–soil feedbacks136. Drought 
or warming that result in reduced plant richness or plant trait diver-
sity could also reduce microbial network complexity137 and microbial 
multifunctionality and potentially render communities less resilient to 
future disturbance138. As microbes play important roles in dynamics of 
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plant coexistence and competition8,41, investigating these relationships 
under different climatic conditions or with novel microbial consortia 
will be important in determining forest vulnerability to climate change.

Future directions for microbiome research in the 
Anthropocene
Synthesizing microbial responses to climatic change remains an ongo-
ing challenge due to the context dependence of these responses and 
lack of baseline measurements18. Moreover, there are relatively few 
studies that directly compare standardized microbial responses to 
climatic disturbance across biomes or MSNs. Large-scale manipulative 
experiments can provide standardized manipulations across a range 
of biomes (for example free air CO2 enrichment), and such initiatives 
provide important insights into the role of the microbiome in plant 
growth dynamics3. Similarly, sampling networks, such as the National 
Ecological Observatory Network, enable tracking of microbiome and 
tree responses across natural gradients, over time or across distur-
bance events139,140. Importantly, studies that standardize sequencing 
approaches141, genetic markers142,143 and downstream bioinformatic 
processing can ensure effective comparisons among studies144.

Another important future direction for forest microbiome 
research is the incorporation of microbial processes into ecosystem 
and Earth system models26. One primary challenge involves modelling 

how rates of nutrient cycling, decomposition, pathogen spread or 
tree health will be impacted by future microbiome responses to dis-
turbance (Box 2). This is particularly complex as multiple types of 
climatic disturbance occur simultaneously, sometimes buffering and 
other times exacerbating the effects of these disturbances on one 
another145. Although microbial processes are often implicitly incor-
porated into models focusing on projecting future forest dynamics6, 
a specific challenge revolves around understanding the contexts in 
which microbially explicit models outperform traditional first-order 
process-based models146. Incorporating projections of microbiome 
functioning could potentially increase the uncertainty of some model 
projections147, at least in the short term. Efforts to constrain the rela-
tive effect size of microbially mediated processes in models remain 
a critical area of research26. Trait-based approaches, which delineate 
microbial communities on the basis of gene or enzymatic traits, are a 
promising opportunity to integrate microbes into ecosystem models148. 
Additionally, properly measuring trait responses to climatic distur-
bances at model-relevant spatial and temporal scales will be essential 
to incorporating microbes into ecosystem models147.

Finally, there is bias towards North American and European 
authors cited in our literature, as well as in other recent reviews on the 
topic18; this stems in large part from our own language limitations as 
well as many structural and systemic biases in research and publication. 
Research investigating forest microbiome response to climate change 
and functional consequences for forest ecosystems is especially poorly 
represented for Latin America, Africa and Southeast Asia. Decolonial 
approaches to research will be critical in better understanding and pre-
dicting a truly global response of forest microbiomes to climate change.

Conclusions
Forest microbiomes play a key role in the structure and function of 
global forests, but they are threatened by rapid and ongoing climate 
change. In this Perspective, we adapt a risk assessment framework to 
identify the vulnerabilities of forest microbiomes to climate change, 
as well as contextualizing potential impacts of microbiomes on for-
est function. Integrating the forest microbiome into conceptual and 
empirical models of forest functioning will advance understanding 
of forest health in the twenty-first century. There remains significant 
uncertainty in the cascade of microbiome-mediated feedbacks that 
will influence forest ecosystem function under climate change, and 
this represents an important area of future study. Overall, the forest 
microbiome remains an underappreciated target of conservation initia-
tives in Western science. We emphasize the importance of Indigenous 
science and sovereignty in managing Native ecosystems73, as well as the 
need for more holistic studies linking macroecology with microbial 
ecology in determining responses of forests to climate change.

This Perspective was edited in English, with Spanish and Portuguese  
translations of the abstract (Supplementary Information) provided 
by the authors. The translations were not checked for correctness  
by Springer Nature.
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