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A B S T R A C T

Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive 
approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, 
the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first 
classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydromete-
orological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of 
the United States were quantified. In addition, based on the results of this hydrometeorology-wildfire relation-
ship analysis, we obtained new clusters that simultaneously considered wildfire characteristics and the impact of 
hydrometeorology on wildfires. In particular, the results were as follows: (1) Through the probability of wildfire 
bivariate statistical characteristics, wildfires could be classified into five types in this paper: WT-1 (mega-wild-
fire), WT-2 (joint wildfire-1), WT-3 (joint extremes), WT-4 (joint wildfire-2), and WT-5 (super frequent wild-
fires); (2) The dominant hydrometeorological variables under different wildfire types were discussed in 17 
ecoregions of the United States; and (3) In the four new cluster regions, intensifying droughts are a concern in 
clusters 1 and 4, while there are multiple concerns in cluster 3, namely, stronger winds, higher temperatures, and 
more drought.

1. Introduction

Wildfires constitute an integral ecological process in the natural 
Earth system associated with regional and global biogeochemical cycles, 
human activities, and vegetation structure (Bowman et al., 2009). 
Additionally, the postfire effect on the physical properties of soil (e.g., 
infiltration rates (Robichaud, 2000), runoff and erosion response 
(Moody et al., 2013; Vieira et al., 2015)), and biological activity (Van 
Mantgem et al., 2020; Yelenik et al., 2013) changes with the charac-
teristics of wildfire. Therefore, before discussing the postfire effect, a 
comprehensive perspective is essential to elucidate what kind of wildfire 
has a higher severity or a higher risk, especially in the United States, 
which hosts 823 million acres of forest and woodland areas (Oswalt 
et al., 2019). Over just a four-year period from 2017 to 2020, nearly 200 
lives were lost, and more than 45,000 structures were destroyed in 
California wildfires (Swain, 2021). In particular, wildfires resulting in 

large burned areas have increased in the western United States in recent 
years (Dennison et al., 2014; Zhang et al., 2020). Subjectively, it appears 
that more wildfire activities could lead to more severe wildfires and 
larger burned areas. However, the reduction in wildfire activities 
(number of wildfires) driven by policy and wildfire management has 
resulted in changes in the vegetation structure and an increase in fuel 
accumulation in the western United States (Hurteau et al., 2014). As a 
consequence, wildfire suppression and the subsequent increase in fuel 
loads have coincided with warmer and drier wildfire seasons, causing 
high-severity wildfire events yielding large burned areas (Dennison 
et al., 2014; Fulé et al., 2003; Holden et al., 2018; Parks and Abatzoglou, 
2020; Steel et al., 2015). These two seemingly contradictory situations 
are attributed to the unique structure of the relationship between the 
wildfire activity (the number of wildfires) and burned area, posing 
challenges to comprehensively assess the wildfire characteristics.

In particular, to describe the relationship among wildfire statistics in 
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detail, this study first provides a concept map of wildfire bivariate sta-
tistical characteristics, as shown in Fig. 1. In this wildfire bivariate sta-
tistical characteristics, two lines control the wildfire activity and burned 
area: the wildfire increase vector (WIV), and wildfire extent vector 
(WEV). Additionally, When the wildfire activity (or burned area) value 
is greater than 99% of the wildfire activity (or burned area) value in the 
sample, it will be considered extreme wildfires (wildfire extreme zone as 
shown in Fig. 1), and five different types of wildfires can be seen in the 
wildfire extreme zone. Among them, the most extensive attention is 
given to mega-wildfires (wildfire type-1, burned area value is greater 
than 99% of the burned area value in the sample), such as the 2014 
California mega-wildfire in the United States (Coen et al., 2018), the 
2017 mega-wildfire in Chile (Pliscoff et al., 2020) and the 2019/2020 
mega-wildfire in Victoria, Australia (Geary et al., 2022). This kind of 
wildfire has nonnegligible negative social, economic, and environ-
mental effects due to its large amount of burned area (Jones et al., 2021; 
Le Breton et al., 2022; Shen et al., 2022). On the other hand, studying 
super frequent wildfires (wildfire type-5, wildfire activity value is 
greater than 99% of the wildfire activity value in the sample) in different 
regions, such as Portugal (Moreira et al., 2010), Australia (Clarke et al., 
2019), and the United States (Cattau et al., 2020), is also a hot topic in 
wildfire science. A related issue associated with super frequent wildfires 
is that they may result in alien species expansion (Syphard et al., 2009). 
For example, biodiversity in California is threatened by shrubbery 

conversion to alien annual grasses under the influence of super frequent 
wildfires (Keeley et al., 2005). However, the discussion of the other 
three types of wildfires (joint wildfire-1, joint extreme wildfire, joint 
wildfire-2) has thus far been very limited and lack corresponding defi-
nitions. This article defines these three types of wildfires for the first 
time and provides a detailed discussion. Accurate classification of 
various wildfire types, utilizing bivariate statistical characteristics, is 
essential for a comprehensive understanding of wildfire changes. This 
classification is particularly crucial when distinguishing between super 
frequent wildfires (classified as wildfire type-5) and mega-wildfires 
(classified as wildfire type-1). Without this nuanced characterization, 
it becomes challenging to analyze the potential mutual transformation 
between type-1 and type-5 wildfires, under varying weather conditions 
and human influences. A thorough understanding of these trans-
formative changes, which represent a shift in the dominant wildfire 
types within a specific wildfire regime, is pivotal for the development 
and implementation of targeted wildfire prevention and control strate-
gies. Thus, only by systematically understanding the relationship and 
causes of different types of wildfires using wildfire bivariate statistical 
characteristics can we implement more targeted wildfire prevention 
plans, thereby increasing the resilience of vegetation and reducing the 
losses caused by wildfires.

Existing studies have extensively explored the relationship between 
hydrometeorological variables and burned area or wildfire activity from 

Fig. 1. Conceptual diagram of the wildfire bivariate statistical characteristics and the locations of five typical wildfire types. The wildfire extreme zone includes 
wildfire types 1–5, indicating extreme wildfire conditions.
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a univariate wildfire perspective. Antecedent hydrometeorological 
conditions, such as reduced precipitation, high temperature, and 
drought events, are found to influence these wildfire events through the 
preconditioning of fuels (Littell et al., 2016). In contrast, wind speed can 
play only a secondary role in wildfire activity (de Dios et al., 2022) but it 
is more sensitive to the burned area (Shabbir et al., 2020). Wind speed is 
a key factor affecting the spread of wildfire after the wildfire has begun 
(Andrews et al., 2013; Özbayoğlu and Bozer, 2012). Once a wildfire 
occurs, the severity of the wind will affect the ultimate size of the 
wildfire event (Keeley and Syphard, 2017). High temperatures can in-
crease evaporation, resulting in drier fuels and water loss in forest flora, 
thus increasing wildfire activity (Mansoor et al., 2022). The largest 
wildfire-burned area was found to be associated with high-temperature 
events (Aldersley et al., 2011; Cardil et al., 2015; Wang et al., 2021). 
Moreover, long-term trends in the burned area and wildfire activity are 
more significantly affected by precipitation and drought than short-term 
trends (Andela et al., 2017; Flannigan et al., 2016; Wei et al., 2020). To 
date, several different types of drought indices, such as the Standardized 
Precipitation-Evapotranspiration index (SPEI) (Cardil et al., 2019; 
Rodrigues et al., 2021), Palmer Drought Severity Index (PDSI) (Collins 
et al., 2006; Flatley et al., 2011) and surface soil moisture (SSM) (Bartsch 
et al., 2009; Dadap et al., 2019), have been used in the discussion of the 
relationship between drought and wildfire. The regional depletion of 
soil (e.g., PDSI and SSM) and atmospheric (e.g., SPI) moisture can lead 
to a low moisture content in duff (both fibrous and humic horizons) and 
surface fuels and can ultimately result in a higher potential for wide-
spread wildfires (Littell et al., 2016). Drought affects the likelihood of 
ignition at multiple time scales, affecting fuel moisture and propagation 
on shorter time scales and affecting fuel availability by controlling 
ecosystem characteristics and productivity on longer time scales 
(Loehman et al., 2014). Considering wildfire activity and burned area 
separately, the relationship between hydrometeorological variables and 
wildfire activity or burned area is well documented. In contrast, the 
relationship between meteorological variables and wildfire bivariate 
statistical characteristics is still emerging. In particular, the effect of 
meteorological conditions on the simultaneous occurrence of extreme 
burned area and extreme wildfire activity, i.e., wildfire type-2 (WT2), -3 
(WT3), and -4 (WT4), has not been explored. Also, it is difficult to fairly 
compare burned area and wildfire activity in previous studies because of 
the large magnitude differences between them. Using a probabilistic 
framework makes it possible to compare WT1 and WT5 at the same 
extreme level.

In the United States, since 2000, an average of 70,072 wildfires have 
occurred each year, burning over 2.8 million ha annually (Hoover and 
Hanson, 2021). Moreover, wildfires in the United States are becoming 
increasingly frequent, leading to greater environmental degradation, 
property damage, and economic loss (Dennison et al., 2014). Wildfires 
in the United States are projected to cost nearly $1.8 billion per year in 
wildfire suppression by 2025 (USFS, 2015). The United States experi-
enced not only multiple mega-wildfire events (Buckland, 2019), such as 
the 2002 Biscuit wildfire (Harma and Morrison, 2003), the 2013 Rim 
wildfire (Povak et al., 2020), the 2007 Zaca wildfire (Keeley et al., 
2009), and the 2014 King wildfire (Coen et al., 2018), but also super 
frequent wildfire events (Cattau et al., 2020). Additionally, considering 
geology, landforms, soils, vegetation, climate, land use, wildlife, and 
hydrology, the United States can be divided into different ecoregions 
(Omernik and Griffith, 2014), and wildfires in different ecoregions show 
spatial heterogeneity. For example, the average burned area in the 
western United States was more extensive than that in the eastern 
United States (Nagy et al., 2018). Additionally, wildfire activity showed 
a decreasing trend in Mediterranean California but an increasing trend 
in the Rocky Mountains (Dennison et al., 2014). Even in the same re-
gions, wildfire characteristics can show temporal heterogeneity under 
the current anthropogenic climate change. As the climate becomes 
warmer and drier, the shift in vegetation from mesic forest and cold 
forest to dry forest and then to shrubland/grassland becomes possible, 

corresponding to an increasing trend of wildfire activity at first, fol-
lowed by a decreasing trend (Parks et al., 2018). The wide variety of 
wildfires and spatiotemporal heterogeneity of wildfire characteristics 
make the United States a suitable study area for examining the 
hydrometeorology-wildfire relationship.

Based on the wildfire bivariate statistical characteristics, we exam-
ined the potential relationships among hydrometeorological variables 
and wildfires from a bivariate perspective. In addition, most studies of 
hydrometeorology in relation to wildfires have examined the relation-
ship between seasonal or annual hydrometeorological variables and 
wildfire variables (wildfire activity and burned area) to measure and 
link patterns of the key drivers of wildfires (Higuera and Abatzoglou, 
2021; Holden et al., 2018; van Wagtendonk et al., 2020). Nevertheless, 
the relationship between hydrometeorology and wildfire should be 
examined on at least a monthly scale to prevent extreme weather con-
ditions from being overlooked due to averaging. In particular, we 
addressed the following key issues in hydrometeorology-wildfire re-
lationships: (1) the dominant hydrometeorological variables of the five 
types of wildfires, (2) the possible intrinsic relationship between the five 
types of wildfires, and (3) the significant changes in hydrometeorolog-
ical variables that need to be noted in the new, different wildfire 
clusters.

2. Materials

2.1. Wildfire data

In this study, the United States, which has many wildfire events, was 
chosen as the study area. This paper divides the United States into 17 
ecoregions based on Environmental Protection Agency regional offices 
(McMahon et al., 2001; Omernik, 1987, 2004; Omernik and Griffith, 
2014), as shown in Fig. 2. Wildfire statistics data in the United States 
were obtained from the 5th Edition of the Forest Service Fire Program 
Analysis - Fire Occurrence Database (FPA-FOD) (Short, 2021). This 
comprehensive dataset includes 2.17 million georeferenced wildfire 
records, representing a total burned area of 667.7 billion m2 from 1992 
to 2018. These wildfire records were acquired from the reporting sys-
tems of federal, state, and local fire organizations. For original 
geographic reference wildfire records, due to the lack of information, the 
dataset can only provide the coordinates of the starting point and the 
final burned area, and cannot provide the shape of the combustion, 
which is simplified into a fire point with an area. Spatially, we have 
adopted a higher resolution (0.5◦ × 0.5◦) to minimize the need for 
cross-grid wildfire statistics. For wildfire events that exceed the grid, we 
will count them at the starting grid of the wildfire occurrence, and do not 
repeat the statistics for the grids that cross later. To construct the 
monthly time series, each wildfire event was plotted in grid cells of 
specific months according to its discovery date and end date. For wild-
fires that continue to burn across months, the wildfire activity will be 
counted in the starting month based on the start date of the wildfire, and 
will not be counted in the month when the wildfire ends. Grid cells with 
fewer than 100 wildfire records during the 27 years were removed to 
ensure accurate estimation of the univariate distribution and bivariate 
distribution, as shown in Fig. 3. This approach may overlook areas with 
fewer wildfire events, but this article will focus more on understanding 
the causes of wildfires in wildfire-prone areas. Additionally, log trans-
formation was subsequently performed to process the wildfire statistics 
into log-burned area (LBA) and log-wildfire activity (LFA). Log trans-
formation is commonly used in the statistical analysis of wildfires and 
can highlight wildfire-sensitive ecosystems that are rarely affected but 
have a lower vegetation restoration capability than other 
wildfire-dependent ecosystems. To avoid a 0 value after log trans-
formation, months with only one wildfire event were converted to 0.1 in 
this study.
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2.2. Basic meteorological data

The underlying meteorological data for this study were obtained 
from ERA5 hourly data at a 0.5◦ × 0.5◦ resolution from 1992 to 2018 
(Hersbach et al., 2018). The variables that were directly used to analyze 
the relationship between hydrometeorological variables and wildfire 
were temperature (TEM), wind speed (WS), and precipitation (PRE). 
Hourly TEM and WS data were calculated as monthly averages, and 
hourly PRE data were aggregated to monthly totals. Other hydromete-
orological data, such as dewpoint temperature, barometric pressure, 

shortwave radiation, and longwave radiation, were used in the calcu-
lation of the drought index.

2.3. Calculated drought index

In this study, three calculated drought indices were applied: the SPEI, 
PDSI, and SSM.

(I) In particular, the PDSI (Palmer, 1965) is calculated from the 
monthly moisture anomalies (MMA) determined by estimating 

Fig. 2. Ecoregions of the contiguous United States.

Fig. 3. Distribution of vegetation in the contiguous United States and the reserved grid cells in this study. Figure 3(b) shows the location of the representative sample 
considered in the frequency analysis. The land cover data in the figure comes from National Land Cover Database 2021.
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the difference between the actual precipitation and the precipi-
tation required for the climate to be suitable for existing condi-
tions (Zhai et al., 2010). The formula used to calculate the MMA 
is shown in Eq. (1). The PDSI incorporates antecedent precipita-
tion, water supply, and water demand into a hydrological system 
(Dai et al., 2004). 

MMAi = K(PRE − (αiPET+ βiPR+φiPRO − δiPL)) (1) 

The MMA can be used to show the dryness/wetness in month i. 
PRE, PET, PR, PRO, and PL represent precipitation, potential 
evapotranspiration, potential recharge, potential runoff, and 
potential loss, respectively. For a more detailed description of the 
parameters, please refer to Wells et al. (2004). The four potential 
values are adjusted based on the climate of the region using αi, βi, 
φi, and δi, leading to the climatically appropriate for existing 
conditions (CAFEC) potential values. These weighting factors, 
known as water-balance coefficients, are determined as follows: 

αi =
ET
PET

(2) 

βi =
R
PR

(3) 

φi =
RO
PRO

(4) 

δi =
L
PL

(5) 

where i ranges over the months of the year. The bar over a term 
indicates an average value. 

As for the K, it is actually a refinement of K’, which is Palmer’s 
general approximation for the climate characteristic of a location. 
Palmer (1965) derived the equations for K’ and for K, respec-
tively, where MMAi is the average moisture departure for the 
appropriate month: 

Kʹ
i = 1.5log10

⎛

⎜
⎜
⎝

PEi+Ri+ROi
Pi+Li

+ 2.8

MMAi

⎞

⎟
⎟
⎠+ 0.5 (6) 

Ki =
17.67

∑12
j=1DjKʹ

j

Kʹ
i (7) 

Through the MMA, the PDSI value can be calculated for a given 
month using the following formula: 

PDSIi =

⎧
⎪⎪⎨

⎪⎪⎩

MMAi

3
, i = 1

PDSIi− 1 +
MMAi

3
− 0.103PDSIi− 1, i > 1

(8) 

In particular, the PET was calculated through the Pen-
man–Monteith equation rather than the Thornthwaite equation 
because the former can more realistically estimate potential 
evapotranspiration. The specific formula is listed as follows: 

PET =
0.408Δ (Rn − G) + γ 900

T+273U2 (es − ea)

Δ + γ (1 + 0.34U2)
(9) 

where Rn is the net radiation, G is the soil heat flux density, T is 
the air temperature at a 2 m height, U2 is the wind speed at a 2 m 
height, es is the vapor pressure of the air at saturation, ea is the 
actual vapor pressure, Δ is the slope of the vapor pressure curve 

and γ is the psychrometric constant (Allen et al., 1998).
(II) The SPEI is based on the monthly difference between the PRE and 

PET at different time scales of interest. The SPEI at different time 
scales can represent different climatic water balances. With a 
value for PET, the difference between the PRE and PET for month i 
can be calculated as follows: 

Di = PREi − PETi (10) 

The calculated Di values are aggregated at different time scales. 
The difference in a given month j and year i depends on the 
chosen timescale k. For example, the accumulated difference for 
one month in a particular year i with a 12-month timescale can be 
calculated as follows (Vicente-Serrano et al., 2010): 

Xk
i,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑12

l=13− k+j

Di− 1,l +
∑j

l=1

Di,l, j < k

∑j

l=j− k

Di,l, j⩾k
(11) 

where Di, l is the P − PET difference in month l of the year i. 
Based on its behavior at the most extreme values, the log- 

logistic distribution is very well adapted to standardizing the D 
series to obtain the SPEI (Vicente-Serrano et al., 2010). The 
probability density function of a three-parameter log-logistic 
distributed variable is expressed as: 

f(x) =
β
α

(x − γ
α

)β− 1
[

1 +
(x − γ

α

)β
]− 2

(12) 

where α, β, and γ are the scale, shape, and origin parameters, 
respectively, for D values in the range (γ >D <∞). 

According to Ahmad et al. (Vicente-Serrano et al., 2010), the 
l-moment procedure is the most robust and easy approach to 
estimating the parameters of the log-logistic distribution. When 
l-moments are calculated, the parameters of the Pearson III dis-
tribution can be obtained following the methods of Singh et al. 
(Singh et al., 1993). 

β =
2w1 − w0

6w1 − w0 − 6w2
(13) 

α =
(w0 − 2w1)β

Γ
(

1 + 1
β

)

Γ
(

1 − 1
β

) (14) 

γ = w0 − αΓ
(

1+
1
β

)

Γ
(

1 −
1
β

)

(15) 

The wi is the probability-weighted moments (PWMs), and 
PWMs of order i are calculated as: 

wi =
1
N

∑N

j=1

(
1 − Fj

)iDi (16) 

Fj =
j − 0.35

N
(17) 

where Fj is a frequency estimator calculated by Hosking (1990). 
The cumulative distribution function of the D series, according 

to the log-logistic distribution, is as follows: 

F(x) =

[

1 +

(
α

x − γ

)β
]− 1

(18) 
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The SPEI can be easily obtained as the standardized values of F 
(x) (Abramowitz and Stegun, 1964): 

SPEI = W −
C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (19) 

where: 

W =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 − ln(P)

√
,P⩽0.5 (20) 

and P is the probability of exceeding a determined D value, P = 1 
− F(x). If P > 0.5, then P is replaced by 1 − P, and the sign of the 
resultant SPEI is reversed. The constants are C0=2.515517, 
C1=0.802853, C2=0.010328, d1=1.432788, d2=0.189269, and 
d3=0.001308. 

An SPEI of one month usually represents the meteorological 
drought, while a timescale of 3–6 months is considered an agri-
cultural drought index. Longer scales, such as 6 months and 12 
months, are used to indicate hydrological drought and to monitor 
surface water resources (Beguería et al., 2014; Hayes et al., 
2011). It should be noted that the SPEI used in this study is the 
mean of SPEI1, SPEI3, SPEI6, SPEI9, and SPEI12.

(III) Unlike the common drought indices that use only precipitation or 
limited meteorological elements in their calculations, SSM is 
affected by numerous factors, such as topography, soil type, and 
multiple meteorological elements. Additionally, soil moisture, as 
a good drought index, can reflect recent precipitation and ante-
cedent conditions, indicating the vegetation potential and avail-
able water storage (Keyantash and Dracup, 2002). The soil 
moisture data used in this study were derived from simulations 
using the Simple Biosphere including the Urban Canopy (SiBUC) 
model developed by Tanaka (Tanaka, 2005), which was devel-
oped based on the Simple Biosphere Model (SiB) (Sellers et al., 
1996). In addition, a single-layer snow model was also considered 
in the SiBUC model, providing an opportunity to consider the 
water supply in spring based on the snow melting process. This 
model has been utilized for not only regional-scale analyses but 
also for global-scale analyses, such as in Turkey (Fujihara et al., 
2008), Japan (Kotsuki et al., 2015), and Southeast Asia (Kotsuki 
and Tanaka, 2013b). Through validation with the measured SSM, 
the SSM simulated by the SiBUC had good accuracy (Shi et al., 
2022). And some studies have found that SiBUC can reproduce 
annual river discharge well in this basin when accurate precipi-
tation records are used (Kotsuki and Tanaka, 2013a, 2013b). The 
SiBUC is a model based on physical processes, which is more 
credible than the empirical model. Notably, the soil moisture 
simulated by the SiBUC in this study is the saturation ratio in the 
first layer. In the calculation of the SiBUC, the effects of human 
activities were eliminated by removing irrigation. After obtaining 
the daily soil moisture, the monthly minimum soil moisture was 
extracted to show the driest situation every month. 

In addition to hydrometeorological data, the land use and land 
type data were obtained from the Global Land Cover Character-
ization (Loveland et al., 2000). The soil parameters and vegeta-
tion parameters such as the leaf area index were obtained from 
ECOCLIMAP (Champeaux et al., 2005).

3. Methodology

Here, we analyzed hydrometeorology-wildfire relationships for 324 
months of wildfire data from 1992 to 2018 to assess how these re-
lationships persist across different ecoregions of the United States. 
Specifically, the bivariate probability of wildfire was first calculated 
from the joint probability distribution. The five different types of wild-
fires were classified according to their probability threshold. Then, the 
probability of hydrometeorological variables corresponding to the 
different wildfire types was calculated to further discuss the relationship 

between hydrometeorology and wildfire. Based on our 
hydrometeorology-wildfire relationship results, we additionally per-
formed a cluster analysis to obtain new wildfire clusters with similar 
wildfire characteristics and hydrometeorological impacts on the wild-
fire. Finally, the trends of each hydrometeorological variable within the 
new wildfire clusters were analyzed.

The flowchart of the calculation is shown in Fig. 4. Specifically, 
methods 3.1 to 3.2 were used to calculate the frequency of hydrome-
teorological elements and the wildfire priority index, respectively. The 
calculation results of the wildfire priority index correspond to Chapter 
4.1. The wildfire priority index was used to classify wildfire types, cor-
responding to result 4.2. The frequency of extracting hydrological and 
meteorological elements under different types of wildfires ranged from 
4.3 to 4.4 in the results. Using the result of 4.4 as input, the clustering 
method of 3.4 was used to obtain the homogeneous zone of wildfire in 
4.5, and the trend analysis method of 3.5 was used to calculate the 
changing trend of wildfire causes in 4.6.

3.1. Optimal selection of univariate distribution

The l-moment has been widely established in statistics for deter-
mining theoretical probability distributions (Bhatti et al., 2019; Gutt-
man et al., 1993; Ye et al., 2018). The l-moment is less affected by 
sampling variability, which is more robust to outliers in the data 
(Guttman et al., 1993). The three important parameters τ2 (L-CV), τ3 (L- 
skewness), and τ4 (L-kurtosis) included in l-moment can be used to 
calculate a variety of different distribution functions (Hosking, 1990), 
including one-parameter, two-parameter, three-parameter, and 
four-parameter distribution functions. A total of seven commonly 
considered marginal distributions were selected in this research. The 
specific expressions of these functions and the parameter estimates are 
provided in Table 1. Specifically, for a time series X(i) of length n, the 
samples are first sorted in ascending order: X(1) ≤ X(2) ≤ … ≤X(n). 
Then, the linear combination of probability weighted moments is given 
in Eq. (21) (Greenwood et al., 1979): 

β0 =
1
n
∑n

i=1
X(i)β1 =

∑n− 1

i=1

[
n − i

n(n − 1)

]

X(i)β3 =
∑n− 2

i=1

[
(n − i)(n − i − 1)
n(n − 1)(n − 2)

]

X(i)

(21) 

The first three l-moments for the population can be calculated by Eq. 
(22): 

λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 − 6β1 + β0 (22) 

where λ1, λ2, and λ3 correspond to the position, scale, and shape mo-
ments, respectively. Then, the l-moment ratios are calculated as follows: 

τ2 =
λ2

λ1
, τ3 =

λ3

λ2
, τ4 =

λ4

λ2
(23) 

Through the above l-moment ratios, distribution parameters can be 
calculated, as shown in Table 1. For more details, please refer to Hosking 
(Hosking, 1990; Hosking and Wallis, 1997). A total of seven commonly 
used marginal distributions were selected in this research, and the ex-
pressions of specific functions are shown in Appendix 1 (Table A1).

For the goodness of fit, the probability plot correlation coefficient 
(PPCC) and the root mean square error (RMSE) are utilized. The RMSE is 
one of the most widely used indicators for goodness of fit (Xu et al., 
2015; Yang et al., 2018). The specific calculation functions are shown in 
Functions 24–25. Similarly, the PPCC judges how well the simulated 
l-skewness and l-kurtosis of a fitted distribution match the average 
regional l-skewness and l-kurtosis values obtained from the observed 
data. The PPCC statistic has a maximum value of 1. The PPCC has been 
shown to be a powerful statistic for evaluating the goodness of fit of a 
wide range of alternative distributional hypotheses (Stedinger, 1993) 
and for performing hypothesis tests of various two-parameter distribu-
tional alternatives. The specific calculation process of PPCC can be 

K. Shi et al.                                                                                                                                                                                                                                      Agricultural and Forest Meteorology 358 (2024) 110215 

6 



found in Function 26. 

Pe = P(A⩽ai) =

∑i
m=1Nm − 0.44
n + 0.12

(24) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(Pe − Pt)

2

√

(25) 

Where Pe and Pt are empirical cumulative probability and theoretical 
cumulative probability, respectively. 

PPCC =

∑n
i=1(Xi − X)(Mi − M)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − X)2
(Mi − M)

2
√ (26) 

Where Xi and Mi are the ordered observations and the order statistic 
medians, respectively; X and M are the average value of observations 
and statistic medians, respectively (Filliben, 1975).

3.2. Optimal selection of joint distribution

The parameter estimation approach of the bivariate distribution is 
Bayesian analysis and the Markov chain Monte Carlo (MCMC) algo-
rithm. Bayes’ law conveniently attributes all the modeling uncertainties 
to the parameters and estimates the posterior distribution of the model 
parameters as follows: 

p(θ|Ỹ) =
p(θ)p(Ỹ|θ)

p(Ỹ)
(27) 

in which P(θ) and P(θ|Ỹ̃) signify the prior and posterior distributions of 

the parameters, respectively. Empirically-based constants in each model 
can be simply removed from the analysis if the main goal is to estimate 
the posterior distribution of the parameters and posterior parameter 
distributions can be estimated as follows: 

P(θ|Ỹ)∝P(θ)P(Ỹ|θ) (28) 

Bayes’ Eq. (27) is usually difficult to calculate. To analytically and 
numerically solve this problem, MCMC is adopted to sample from the 
posterior distribution. MCMC algorithms are a class of statistical 
methods to sample from high-dimensional complex distributions 
(Andrieu and Thoms, 2008). The equilibrium state of MCMC, if the 
transition kernel warrants ergodicity, represents the target distribution.

In terms of the goodness-of-fit, the Watanabe-Akaike information 
criterion (WAIC) (Watanabe and Opper, 2010) is employed: 

WAIC = − 2
∑n

i=1
log

(
Epost [p(yi|θ)]

)
+ 2

∑n

i=1
Varpost(logp(yi|θ)) (29) 

where the symbols Epost and Varpost denote mean and variances against 
the posterior distribution, respectively.

WAIC is stable because it has the desirable property of averaging 
over the posterior distribution rather than conditioning on a point es-
timate (Vehtari et al., 2017). A total of six commonly used joint distri-
butions were selected in this research, and the expressions of specific 
functions are shown in Appendix 1 (Table A2).

3.3. Wildfire priority index

As described in the introduction, the direct application of the 
bivariate probability distribution for wildfire frequency analysis results 
in single mega-wildfire events and numerous wildfire activities being 
overlooked within normal burn areas. Accordingly, we used the 
weighted average method to obtain the probability of wildfire priority 
(WP) to balance the bivariate joint probability and univariate proba-
bility. The specific function is as follows: 

WP = αPXY(X⩽xi,Y⩽yi) + βPX(X⩽xi) + γPY(Y⩽yi), α + β + γ = 1 (30) 

where α, β, and γ are weighting coefficients. In Eq. (30), X represents log 
(LBA) and Y represents log(LFA). To ensure that there is enough weight 
in the joint extremes, this study sets α to 1/3. The values of α, β, and γ 

Fig. 4. The flowchart of calculation. LFA: log wildfire activity, LBA: log burned area, HM: hydrometeorological elements.

Table 1 
Trend categories according to the Z values.

Categories Z values

Significant increasing trend [1.96, +∞)
Weak increasing trend [1.64, 1.96)
No significant increasing trend [0, 1.64)
No significant decreasing trend (− 1.64, 0)
Weak decreasing trend (− 1.96, − 1.64]
Significant decreasing trend (-∞, − 1.96]
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will affect the assessed wildfire risk level. For example, a higher β value 
means that the burned area is considered to be more important in the 
wildfire bivariate characteristics. There, we use the line search (Nocedal 
and Wright, 1999) (step size is 0.01) to select the optimal β and γ. β is set 
to C*2/3, and γ is (1-C)*2/3. C is discrete from 0 to 1 in steps of 0.01. 
This study requires the wildfire priority index to perform better than 
bivariate joint probability in the case of super frequent wildfires and 
mega-wildfires. Therefore, the objective function (OF) is set to the sum 
of the proportion of the wildfire priority index that is better than the 
joint probability when the probability of log-burned-area is greater than 
0.95 and when the probability of log-wildfire-activity is greater than 
0.95. The specific objective function is as follows: 

OF1 =
numberof [PWP − PXY(X⩽xi,Y⩽yi)] > 0 whenPX(X⩽xi)⩾ 0.95

numberofPF(x)(xi⩾ X)⩾ 0.95
(31) 

OF2 =
numberof [PWP − PXY(X⩽xi,Y⩽yi)] > 0 whenPY(Y⩽yi)⩾ 0.95

numberofPY(Y⩽yi)⩾ 0.95
(32) 

OF = OF1 + OF2 (33) 

3.4. Representative sample selection

After calculating the probabilities of wildfire activity and burned 
area, as well as the wildfire priority index, we selected four represen-
tative sample points to further discuss the performance of our wildfire 
priority index in Results Section. Samples 1~3 represent wildfire types 
in wildfire extreme zone in Fig. 1. And sample 4 represents a general 
sample of wildifre. Sample 1, as a representative of super frequent 
wildfire, experienced 10 wildfire events within a month in February 
2000. Sample 2 represents joint extreme wildfre, with frequent wildfire 
activity and a large burned area in April 1998. While for sample 3, it 
represents mega-wildfire. Sample 3 contains the largest mega-wildfire in 
California history from 1992 to 2018, namely, the Mendocino Complex 
Fire (Jia et al., 2020; Tentoglou et al., 2021). The total burned area due 
to the Mendocino Complex Fire reached almost 460 thousand acres, 
destroying over 280 businesses and homes (Yaloveha et al., 2019). 
Sample 4 from April 1995, as a general sample, came from non wildfire 
extreme zone.

3.5. Cluster analysis method

For the cluster analysis, all variables were normalized to prevent 
some variables with a wide range of changes from affecting the clus-
tering results. The Mclust toolkit based on R was used for cluster analysis 
of the comprehensive dataset, which comprises three elements: (1) 
initialization via model-based hierarchical agglomerative clustering; (2) 
maximum likelihood estimation via the Expectation-Maximization (EM) 
algorithm (Bradley et al., 1998; Dempster et al., 1977); and (3) selection 
of the Bayesian model and the number of clusters using approximate 
Bayesian factors with the BIC approximation (Fraley and Raftery, 2002; 
Fraley et al., 2012; Scrucca et al., 2016). Unlike traditional clustering 
methods such as k-means clustering (MacQueen, 1967) and Ward’s 
method (Ward Jr, 1963), the Mclust toolkit can address how many 
clusters there should be, which clustering method should be used, and 
how outliers should be handled. In particular, the Mclust toolkit entails 
the following four steps: It (1) determines the maximum number of 
clusters (M) and a set of mixture models to consider; (2) performs hi-
erarchical agglomeration to approximately maximize the classification 
likelihood for each model and obtain the corresponding classifications 
for up to M; (3) applies the EM algorithm for each model and each 
number of clusters, starting with the classification from hierarchical 
agglomeration groups; and (4) computes the BIC approximation for the 
one-cluster case for each model and for the mixed model with the 

optimal parameters from EM for each cluster (Fraley and Raftery, 2002; 
Fraley et al., 2012; Scrucca et al., 2016). This study sets the maximum 
number of clusters (M) to 8, and 4 is selected as the optimal number of 
clusters in the final result. In addition, noise and outliers can be handled 
by iterative sampling, in which points of low probability are removed 
from the clusters and the clustering/removal process is repeated until all 
remaining observations have a relatively high density (Fraley and Raf-
tery, 2002; Fraley et al., 2012; Scrucca et al., 2016).

3.6. Trend analysis method

The Mann-Kendall (MK) test, which was proposed by Mann (Mann, 
1945) and modified by Kendall (Kendall, 1948), is widely used for 
analyzing the change trends in hydrometeorological time series (Liu 
et al., 2015; Yue and Wang, 2002). The advantage of the MK test is that 
the time series does not require any special form for the probability 
distribution function, which means it is less sensitive to potential 
interference from outliers in the data (Serrano et al., 1999). However, 
the test requires that the data be independent. Some hydrometeoro-
logical time series may usually display serial correlation, which will 
increase the probability that the MK test detects a significant trend, 
altering the estimated magnitude of the serial correlation (Yue and 
Wang, 2002). To efficiently eliminate the effect of the serial correlation 
on the MK trend test, Yue et al. proposed the trend-free prewhitening MK 
(TFPW-MK) test (Yue and Wang, 2002). Before the MK test, the time 
series are first detrended and prewhitened. The steps are listed in Ap-
pendix 1. And the trend can be classified according to the Z value 
(Table 1) (Wang et al., 2015).

4. Results

4.1. Performance capabilities of wildfire priority index

The optimal parameter C for the wildfire priority index is determined 
based on the selected univariate and bivariate joint probability distri-
butions, as shown in Fig. 5. The value of the large parameter C means 
that more weight is given to the mega-wildfire. However, when the 
value of C exceeds 0.74, the objective function begins to decrease. In 
other words, the too-large parameter C will ignore most super frequent 
wildfires and further affect the ability of the wildfire priority index to 
assess wildfire risks. For details on the selection of functions for mar-
ginal distribution and joint distribution, please consult Appendix 2.

To compare the wildfire assessment ability of the optimal wildfire 
priority index in detail, Fig. 6 shows the difference between Joint, 
wildfire priority index-1 (Control group: α=1/3, β=1/3, and γ=1/3) and 
wildfire priority index-2 (Optimal group: α=1/3, β=74/150, and γ=26/ 
150) in describing the wildfire risk through the probability and return 

Fig. 5. Optimal curve of parameter C. When the parameter C = 0.74, the 
objective function has the optimal value.
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period. Additionally, this study selected four representative samples to 
evaluate the advantages and disadvantages of these three different 
methods. Fig. 6 demonstrates that the probability more sensitively 
measures the difference in extreme events (super frequent wildfires and 
mega-wildfires), while the return period is more sensitive to joint 
wildfire events. In other words, the probability can suitably represent 
the difference between Joint, wildfire priority index-1 and wildfire 
priority index-2 given the considered samples, while the return period is 
suitable for disaster risk trend analysis. Therefore, the PXY of represen-
tative samples is listed in Table 2. Sample 1 represents super frequent 

wildfires resulting in a normal burned area. Ten wildfire events within a 
month in the grid of sample 1 in February 2000. The corresponding PXY 
values of wildfire priority index-1 and wildfire priority index-2 are 
39.47% and 24.16%, respectively. The wildfire priority index-1 in-
dicates that the priority of super frequent wildfires is higher than that 
indicated by wildfire priority index-2, but both perform better than 
Joint. Given sample 2, which exhibits both a burned area and wildfire 
activity associated with a large return period value in April 1998, there 
is a minor difference in the performance of the return period between 
wildfire priority index-1 and wildfire priority index-2, reaching more 
than 99% of PXY. The advantage of focusing on mega-wildfires is more 
significant in wildfire priority index-2 when considering sample 3. The 
probability of sample 3 (mega-wildfire) considering Joint and wildfire 
priority index-1 is still lower than 50%, indicating that these two 
methods are insufficient in the assessment of mega-wildfires. In contrast, 
the probability of wildfire priority index-2 is 65.49%, which is signifi-
cantly higher than that of Joint and wildfire priority index-1. Sample 4 
attained a PXY value of 98.86% for the burned area and a PXY value of 
90.00% for the wildfire activity. The burned area of sample 4 (came 
from non wildfire extreme zone) in April 1995 reached 34 thousand 
acres, which was the second-largest fire in the history of this sample. The 
performance of wildfire priority index-2 is also better than that of 
wildfire priority index-1, reaching a probability of 94.03%. Overall, 
both the wildfire priority index-1 and wildfire priority index-2 perform 
better than Joint in assessing wildfire conditions. In particular, the 

Fig. 6. Comparison of the probability and return period between Joint, wildfire priority index-1 and wildfire priority index-2. Wildfire priority index1 is the control 
group: α=1/3, β=1/3, and γ=1/3. Wildfire priority index-2 is the optimal group: α=1/3, β=74/150, and γ=26/150.

Table 2 
PXY of the four representative samples. The locations of the four sample points 
are shown in Figure 3(b).

P of log- 
burned- 
area

P of log- 
wildfire- 
activity

P of 
Joint

P of 
wildfire 
priority 
index-1

P of 
wildfire 
priority 
index-2

Date

Sample 
1

2.14% 97.86% 18.42% 39.47% 24.16% 02/ 
2000

Sample 
2

98.93% 99.64% 98.78% 99.12% 99.00% 04/ 
1998

Sample 
3

99.50% 0.50% 48.95% 49.65% 65.49% 07/ 
2018

Sample 
4

98.86% 90.00% 88.97% 92.61% 94.03% 04/ 
1995
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advantage of wildfire priority index-2 is that mega-wildfires are 
assigned a higher priority.

4.2. Performance capabilities with different probabilities

In order to effectively evaluate the relationship between hydrome-
teorology and wildfire behavior, it is imperative to first establish a 
classification system for the five identified wildfire types. This paper 
selected marginal probabilities and joint probabilities combined with 
marginal probabilities as control groups to compare the differences in 
assessing the hydrometeorology-wildfire relationship under different 
probability calculation methods. Regarding the control groups, the 
threshold probabilities were primarily influenced by the extent of the 
burned area, which was a critical factor in both WT1 and WT2. Due to 
the limited research on wildfire based on probability frameworks, we 
referred to the probability threshold of 0.99 for defining extreme high- 
temperature events and extreme rainfall events when selecting the 
probability threshold for extreme fire events (Myhre et al., 2019; 
Thackeray et al., 2022). In addition, as WT1 is defined as a type of 
wildfire with a large burned area but minimal wildfire activity, the 
probability of wildfire activity for WT1 was set to less than 0.3. The 
reason for not choosing a threshold of 0.2 or 0.1 here was that there were 
no WT1 fires in the entire study area. As the wildfire activity increases, 
WT1 gradually transitions to WT2. For WT2, wildfire activity near the 
0.5 probability was selected, i.e., fire activity probabilities between 0.45 
and 0.55. The same approach was used for WT4 and WT5. WT3 indicates 
that both the burned area and wildfire activity reached extremes, so the 
probability threshold for both was 0.99. For the experimental group, the 
univariate probabilities were selected according to the same principles 
as the control group. For the joint probability, WT3 indicated the 
extreme condition and thus had a joint probability threshold of 0.99. 
WT1, WT2, and WT3 have the same threshold of burned area, and their 
probability threshold for wildfire activity represent near the minimum 
value, near the median value, and near the maximum value, respec-
tively. The same is true for the threshold of burned area for WT5, WT4, 
and WT3. For the experimental group, the threshold range was adjusted 
several times for WT1, WT2, WT4, and WT5, and the three experimental 
groups achieved the most similarity to the control group when the final 
probability thresholds were within the range in Table 3.

Based on the probability threshold in Table 3, Fig. 7 shows the 
comparison results for the experimental and control groups, with 
different colors indicating the median probability of weather values. For 
specific measurements of performance, in fact, we have used the average 

absolute value of difference (AAD) under different types of wildfires. For 
example, for WT1, the probability of each meteorological variable joint 
in the experimental group is subtracted from the probability of each 
meteorological variable joining the experimental group, and then 
calculate the average absolute value of the difference. WP2 was most 
similar to the control group, especially in WT1 and WT2, where the 
burned area was the dominant element. WP2 performed significantly 
better than WP1 and the joint, especially when measuring the rela-
tionship between the hydrometeorological variables and WT1, which 
was also consistent with the findings in Result 4.1. For WT3, there was 
no significant difference between the three experimental groups. Addi-
tionally, WP1 and WP2 also outperformed the joint for WT4. In 
conclusion, by comparing the probabilities calculated under the 
different methods, WP2 was found to outperform the other two 
methods. Therefore, WP2 was used to classify the wildfire types in all 
subsequent analyses.

4.3. Overall wildfire conditions in the United States

Based on the classification method of WP2, the seasonal distribution 
of the five wildfire types is shown in Fig. 8 and Fig. 9. WT1 and WT5 
showed significant seasonality. WT1 was mainly concentrated in sum-
mer (39.1% of the total), while WT5 corresponded to spring (35.7% of 
the total). For WT2 and WT4, the wildfire was dominant in autumn, 
accounting for 33.9% and 30.0% respectively. However, for WT3, it has 
a high proportion in spring and summer, with 32.3% and 32.5% 
respectively. In fact, in the United States, especially in the eastern United 
States, there is much wildfire activity (especially human-caused wild-
fires) in the spring (Balch et al., 2017; Nagy et al., 2018). On the other 
hand, of the 43 notable mega-wildfires in the United States (Buckland, 
2019), 33 wildfires occurred in the summer, and July accounted for 
42.2% of the summer mega-wildfires.

To further understand the hydrometeorology-wildfire relationship in 
the United States, the probabilities of the hydrometeorological variables 
under different wildfire types are tabulated in Fig. 10. A higher proba-
bility indicated drier (less precipitation and lower SPEI, PDSI, or SSM 
values), hotter weather, and stronger wind speeds. For WT1, known as 
mega-wildfire, dry soil and lack of precipitation (SMM and PRE) were 
two of the main causes of severe wildfires, which were also favorable 
conditions for fuel accumulation. There are no particularly high mete-
orological element probability values (greater than 0.7) in WT2. How-
ever, this does not suggest that there is no relationship among 
hydrometeorological variables between WT2 but rather that wildfires 
are often subject to a combination of meteorological elements in loca-
tions that are dominated by large burned areas. For the other three 
wildfire types, three significant high-probability variables could be 
identified, specifically WT3 dominated by SPEI, PRE, and TEM; WT4 
dominated by SSM, SPEI, and PRE; and WT5 dominated by SSM, PRE, 
and TEM. Compared to a regular wet and rainy spring, a warm and dry 
spring dominated by a high probability of SSM, PRE, and TEM created 
natural conditions for frequent wildfire activity, i.e., WT5. There are two 
possible reasons for the differences in the performance of SSM, PDSI, and 
SPEI for WT4 and WT5. One reason is that the differences in the per-
formance of different drought indices are mainly due to their different 
calculation processes and represented physical processes. SSM, as a soil 
drought index, can affect the moisture content of dead fuel. PDSI and 
SPEI are both representatives of meteorological drought indices. 
Another reason is that WT4 and WT5 are both types of wildfires domi-
nated by wildfire activity. The occurrence of wildfires is more suscep-
tible to the influence of fuel. And SMM not only affects the fuel moisture 
content but also affect the accumulation of fuel, so SSM performs better 
on WT4 and WT5 than PDSI and SPEI.

4.4. Hydrometeorology-wildfire relationship in different ecoregions

The hydrometeorological conditions and vegetation characteristics 

Table 3 
Probability thresholds for wildfire classification. X and Y correspond to log(LBA) 
and log(LFA).

Types Control Group Experimental Group

Joint (direct 
application of 
joint 
probability)

WP1 
(wildfire 
priority 
index-1)

WP2 
(wildfire 
priority 
index-1)

WT1 
(mega- 
wildfire)

PX>0.99 
PY<0.30

PX>0.99 
0.7<PJoint or WP1 or WP2<0.8

WT2 
(joint 
wildfire-1)

PX>0.99 
0.45<PY<0.55

PX>0.99 
0.8< PJoint or WP1 or WP2<0.9

WT3 
(joint 
extremes)

PX>0.99 
PY>0.99

PJoint or WP1 or WP2>0.99

WT4 
(joint 
wildfire-2)

PY>0.99 
0.45<PX<0.55

PY>0.99 
0.8< PJoint or WP1 or WP2<0.9

WT5 
(super 
frequent 
wildfires)

PY>0.99 
PX<0.30

PY>0.99 
0.7< PJoint or WP1 or WP2<0.8
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exhibit significant variability across the diverse ecoregions of the United 
States. To elucidate the intricate interplay between these factors, 
Figs. 11-13 provide a detailed representation of the relationships be-
tween hydrometeorological variables and wildfire within each 

ecoregion (The enlarged versions of Figs. 11-13 can be seen in Appendix 
1). These analyses are further stratified by season and temporal varia-
tions. The seventeen ecoregions under study can be categorized into 
three distinct groups, based on the diversity of wildfire types they 

Fig. 7. Comparison of the performance of the Joint, WP1, and WP2 methods in assessing the impact of weather elements using the wildfire bivariate statistical 
characteristics framework. The numbers in the graph represent the average absolute difference between the probability of hydrometeorological variables in the 
experimental group and the probability of meteorological elements in the control group.

Fig. 8. Seasonal distribution of wildfires in the U.S. LBA: log-burned area, LFA: log-wildfire activity.
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encompass: (1) ecoregions that exhibit all five identified wildfire types, 
(2) ecoregions where four wildfire types are present, lacking super 
frequent wildfires (WT5), and (3) ecoregions that are characterized by 
the presence of three or fewer wildfire types.

Across six ecoregions, all wildfire types were observed (the Western 
Sierra Madre Piedmont and Warm Deserts, Western Cordillera, South-
eastern Plains, Ozark Ouachita-Appalachian Forests, Mississippi Alluvial 
and Southeastern Coastal Plains, and West-Central Semi-Arid Prairies). 
Notably, in the Western Sierra Madre Piedmont and Warm Deserts, WT5 
predominantly occurred during the summer of 1992–1999, largely 
driven by high temperatures. This ecoregion experienced a decline in 
extreme wildfires, with no WT1 or WT5 recorded from 2010 to 2018. In 
both the Ozark Ouachita-Appalachian Forests and West-Central Semi- 
Arid Prairies, strong winds facilitated the spread of WT5 (mega-wild-
fires). However, the dominant factors of WT3 differed between these 
ecoregions: PDSI in the Ozark Ouachita-Appalachian Forests and both 
PRE and WS in the West-Central Semi-Arid Prairies. The WT2 in the 
Southeastern Plains was marked by high-probability hydrometeorolog-
ical variables, with low precipitation and drought (particularly SPEI) 
favoring WT2 conditions. The Mississippi Alluvial and Southeastern 
Coastal Plains saw a notable PRE-WT1 correlation. In the Western 
Cordillera, extreme temperatures predominated for WT4 and WT5, with 
a significant uptick in extreme wildfire events from 2010 to 2018, and 
WT2 and WT4 occurring in all seasons.

Seven ecoregions, specifically Cold Deserts, Mediterranean 

California, Mixed Wood Shield, Marine West Coast Forest, Mixed Wood 
Plains, Temperate Prairies, and South-Central Semi-Arid Prairies, were 
identified as lacking super frequent wildfires (WT5). In these regions, 
certain ecoregions exhibited a high probability of specific hydromete-
orological variables influencing WT1 wildfires. These include PDSI- 
SSM-WT1 in Cold Deserts, PRE-WT1 in Mixed Wood Shield, PDSI- 
SPEI-WT1 in Temperate Prairies, and PRE-WS-WT1 in South-Central 
Semi-Arid Prairies. In the remaining three ecoregions, dominant hy-
drometeorological variables were linked to WT2, with TEM-WT2 in 
Mediterranean California, SSM-SPEI-WT2 in Marine West Coast Forest, 
and TEM-WT2 again in Mixed Wood Plains. Furthermore, the occur-
rence of WT1, WT2, WT3, and WT4 in Mixed Wood Shield, Marine West 
Coast Forest, and Mixed Wood Plains was confined to the period from 
2010 to 2018.

Among the four other ecoregions, the Upper Gila Mountains, Atlantic 
Highlands, Central Plains, and Texas-Louisiana Coastal Plain and 
Tamaulipas-Texas Semiarid Plain, joint extremes existed only in the 
Central Plains. The vegetation cover of the Central Plains is mainly 
grassland, and wildfire activity and burned area have a strong correla-
tion, with a high probability of wildfire activity and burned area often 
occurring simultaneously. The dominant combinations of 
hydrometeorological-wildfire relationships in the other three ecoregions 
were WT1 with PDSI in the Upper Gila Mountains, WT1 with WS in the 
Atlantic Highlands, and WT2 with TEM in the Texas-Louisiana Coastal 
Plain and Tamaulipas-Texas Semiarid Plain.

Fig. 9. The proportion of different types of wildfires in four seasons. The circular diagram on the left represents WT1~WT5 from the outer ring to the inner ring, 
respectively.

Fig. 10. Average probability (P(X < x)) of meteorological values under the five fire types in the U.S.: (a) Overall conditions; and (b) Median value.
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In addition, we focused on the seasonal variation in wildfires, for 
example, in Mediterranean California and the Ozark Ouachita- 
Appalachian Forests the season of occurrence of oversized fires shifted 
from spring and summer to autumn and low soil moisture content was 
dominant in autumn. In other words, the impact of extreme autumn 
drought on mega-fires increased. Both WT2 and WT4 in Mediterranean 
California had the same second dominant factor, i.e., wind, but WT4 
could change to WT2 when the first dominant factor changed from PRE 

to TEM. A similar situation was found in the Ozark Ouachita- 
Appalachian Forests, where WT2 could also change to WT4 when the 
dominant factor changed from PDSI combined with SPEI to PDSI com-
bined with SSM. This revealed that joint wildfires are influenced by 
similar factors and that changes in meteorological elements at different 
times can cause joint wildfires to transition between WT2 and WT4.

Fig. 11. Median probability (P(X < x)) of meteorological factors in ecological regions 1–6 in different seasons and years.
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Fig. 12. Median probability (P(X < x)) of meteorological factors in ecological regions 7–13 in different seasons and years.
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4.5. Spatiotemporal characteristics of wildfire statistics

The hydrometeorology-wildfire relationships within the 17 ecor-
egions presented too much information. To further extract valid infor-
mation and thus provide guidance for wildfire prevention, the median of 

the distribution for hydrometeorological values under each wildfire type 
were used as input (missing fire types were input as 0) to obtain four new 
clusters, as shown in Fig. 14. Specifically, cluster 1 contained Mediter-
ranean California, Cold deserts, South-Central Semi-Arid Prairies, Mixed 
wood Shield, Atlantic Highlands, Mixed wood Plains, with multiple 

Fig. 13. Median probability (P(X < x)) of meteorological factors in ecological regions 14–17 in different seasons and years.

Fig. 14. Clustering zones of ecoregions based on the probability of meteorological factors.
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vegetation types. Cluster 2 contained two ecoregions, the Central Plains 
and the Texas-Louisiana Coastal Plain and Tamaulipas-Texas Semiarid 
Plain, where the vegetation cover is mainly cultivated crops and hay. 
Cluster 3 includes 7 ecological zones, such as Upper Gila Mountains, 
Western C’ordillera, etc. There are also many types of vegetation in 
Cluster 3, mainly including evergreen forests and deciducous forests. 
Marine West Coast Forest and Temperate Prairies form the cluster 4 
where the vegetation cover is mainly cultivated crops and evergreen 
forests. This cluster partitioning divided the original classification of 
ecoregions that considered only vegetation and climatic characteristics. 
Considering the relationship between hydrometeorology and wildfire 
through classification is more instructive for wildfire research. For 
example, unlike other plain types, the wildfire activity and burned area 
within cluster 2 had a strong correlation, and WT1 and WT5 were 
completely absent from these two ecoregions.

From Fig. 15 (The enlarged versions of Fig. 15 can be seen in Ap-
pendix 1), among the four clusters, only cluster 3 had all wildfire types, 
and cluster 2 had only three types of wildfires: WT2, WT3, and WT4. The 
most significant combination of all the combinations of wildfire type and 
hydrometeorological variables in both cluster 1 and cluster 2 was WT2- 
TEM. In cluster 3, the dominant roles of the SPEI and PDSI for WT2 
prevailed. The dominant role of the SPEI and PDS in cluster 4 was re-
flected in WT1.

Additionally, by analyzing the trend of the hydrometeorological 
variables in all the clusters and extracting the top two variables with the 
highest probability (as shown in Fig. 16), it could be seen that drought 
showed an intensifying trend among the hydrometeorological variables 
in cluster 1. Cluster 4 was similar to cluster 1 and also has increased 

drought concerns. The hydrometeorological variables in cluster 2 
showed no significant change trend. Multiple extreme hydrometeoro-
logical variables (stronger winds, drier weather, higher temperatures) 
intensified simultaneously in cluster 3.

5. Discussions

This paper mainly focuses on the bivariate characterization of 
wildfire that considers both burned area and wildfire activity, rather 
than the univariate wildfire cause analysis that most scholars have paid 
attention to in the past. Although there are many studies on wildfire in 
the continental United States, the analysis framework based on the 
bivariate characteristics of wildfires proposed in this paper for the first 
time can reduce two-dimensional variables to one-dimensional 
comprehensive consideration (Abatzoglou and Kolden, 2013; Margolis 
and Swetnam, 2013; Riley et al., 2013). In particular, the wildfire pri-
ority index (especially the wildfire priority index-2) provided in this 
study can offer a new way to identify high wildfire-risk regions. On the 
one hand, since the wildfire priority index is based on the probability of 
each grid cell, the index value can be compared between different grid 
cells. Even with the same burned area or wildfire activity, Evergreen 
Forests in California and Herbaceous in the plains of the western con-
tinental United States can have varying degrees of wildfire risk. How-
ever, the corresponding probability values for the two regions will be 
different and thus can be compared. On the other hand, the wildfire 
priority index provides global characteristics of wildfire conditions. For 
example, within the same grid cell, the burned area and wildfire activity 
characteristics vary greatly between different months. In the sample-2 

Fig. 15. Probability of meteorological factors in the clustering zones.
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grid cell, there were 19 wildfire events in September 1992 with the 
burned area of 2.5 ha, while in September 2003 there were 5 wildfire 
events with the burned area of 14.4 ha. In this case, using only the 
burned area or the wildfire activity may result in the opposite degree of 
risk for wildfires, while the wildfire priority index can take into account 
wildfire bivariate characteristics to assess wildfire risk more compre-
hensively. In addition, through the trend analysis of the return period 
calculated by the wildfire priority index, the regions that need to be 
focused on in the future can be obtained. Compared with the wildfire 
events that have occurred, the changing trend of future wildfire risks 
will be more instructive for fire management.

Furthermore, based on the identification of different types of wild-
fires, more targeted wildfire prevention and control measures can be 
taken. For example, for mega-wildfire (WT1), fuel treatments and 
human-controlled open burning as a process to increase resistance to 
high-severity wildfires could provide a viable option for slowing vege-
tation change and the associated impacts on carbon cycling and biodi-
versity over larger areas (Hurteau et al., 2014). On the other hand, for 
super frequent wildfires (WT5), broad-scale reduction of human-caused 
ignitions and the redistribution of fire-dependent forest types away from 
human ignition sources (Sturtevant et al., 2009). In addition, based on 
the possible changes in wildfire types discovered in this study, it be-
comes even more important to flexibly adjust wildfire prevention stra-
tegies instead of adopting an unchanging strategy according to the 
changes in dominant wildfire types in the wildfire regime.

6. Conclusions

Unlike previous studies that considered burned area and wildfire 
activity separately in their wildfire regime classifications (Brewer et al., 

2005; Malamud et al., 2005; Trucchia et al., 2022), we present the first 
wildfire type classification based on the wildfire bivariate statistical 
characteristics in this paper. On this basis, the influence of hydromete-
orological variables on different wildfire types was examined in the 
United States during 1992~2018. From the results, the major conclu-
sions and limitations were as follows:

(1) In this paper, wildfires were classified into five types using the 
bivariate statistical characteristics of wildfire: WT1 (mega-wild-
fire), WT2 (joint wildfire-1 (burned area dominated)), WT3 (joint 
extremes), WT4 (joint wildfire-2 (fire activity dominated)), and 
WT5 (super frequent wildfires). In the United States as a whole, 
WT1 and WT2 were affected by multiple weather elements and 
their causes were more complicated, while WT5 was mainly 
affected by soil moisture, precipitation, and temperature.

(2) The influence of hydrometeorological variables on different 
wildfire types was discussed in 17 ecoregions. The most dominant 
combinations of hydrometeorological variables and wildfire 
types in the 17 ecoregions were PDSI-WT1 in the Cold deserts, 
TEM-WT2 in Mediterranean California, TEM-WT5 in the Western 
Sierra Madre Piedmont and Warm Deserts, SPEI-WT1 in the 
Upper Gila Mountains, PRE-WT1 in the Mixed wood Shield, WS- 
WT1 in the Atlantic Highlands, PRE-WT1 in the Western Cordil-
lera, SPEI-WT2 in the Marine West Coast Forest, TEM-WT2 in the 
Mixed wood Plains, WS-WT3 in the Central Plains, SPEI-WT2 in 
the Southeastern Plains, WS-WT1 in the Ozark Ouachita- 
Appalachian Forests, PRE-WT1 in the Mississippi Alluvial and 
Southeastern Coastal Plains, PDSI-WT1 in the Temperate Prairies, 
TEM-WT5 in the West-Central Semi-Arid Prairies, SPEI-WT2 in 
the South-Central Semi-Arid Prairies, and TEM-WT2 in the Texas- 

Fig. 16. The top two dominant meteorological factors in the clustering zones.
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Louisiana Coastal Plain and Tamaulipas-Texas Semiarid Plain. 
Additionally, changes in hydrometeorological variables in 
different periods could lead to mutual conversion between WT2 
and WT4.

(3) In the four new clusters, intensifying droughts are a concern in 
clusters 1 and 4, while there are multiple concerns in cluster 3, 
namely, stronger winds, higher temperatures, and more drought.

(4) There remain a few limitations in describing the bivariate char-
acteristics of wildfire. Wildfire statistics do not yield long-term 
continuous time series similar to other traditional hydro- 
meteorological data. It is also common that no wildfire occurs 
for several months in a high-rainfall year. Even though grid cells 
with fewer than 100 valid data points were removed in this study, 
the data length remains an unavoidable source of uncertainty in 
frequency analysis. The generation of longer data series or 
reconstruction of wildfire events through paleoclimate research 
can provide more reliable data for wildfire frequency analysis.

(5) An additional limitation of the wildfire classification analysis 
presented in this article is the omission of human influences in its 
consideration, such as wildfire management, wildfire suppres-
sion, wildfire prevention, and fuel treatments. Considering 
human influences on wildfire will be critical in future research. In 
wildfire forecasting, atmospheric-oceanic indices and hydro- 
meteorological elements and indicators such as GDP and popu-
lation density need to be considered as predictor variables.

Overall, even though our study focused only on bivariate statistical 
characteristics of wildfire, it also provided a new way of thinking about 
other compound hazards in the face of climate change. Research on 
compound hazards such as compound droughts and hot extremes (Hao 
et al., 2018) and compound wildfires and COVID-19 (Navarro et al., 
2021) has surfaced in recent years. By applying the analytical frame-
work of compound hazards in this paper, the understanding of other 
types of compound hazards can also be improved.
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