Publications Library

Found 794 results
Filters: Keyword is technical reports and journal articles  [Clear All Filters]
2022
Maxwell C, Scheller RM, Long JW, Manley P. Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada. Ecology and Society. 2022;27(1).PDF icon Maxwell et al_2022_Ecol Society_Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin CA and NV.pdf (2.24 MB)
Anderegg WRL, Chegwidden OS, Badgley G, et al. Future climate risks from stress, insects and fire across US forests. Ecology letters. 2022;25:1510–1520.PDF icon Anderegg et al_2022_Future climate risks from stress, insects, and fire across US forests.pdf (3.12 MB)
K.Creutzburg M, C.Olsen A, A.Anthony M, et al. A geographic strategy for cross-jurisdictional, proactive management of invasive annual grasses in Oregon. Rangelands. 2022:173-180.PDF icon Creutzburg et al_2022_A geog strategy for crossjurisdictional proactive mgmt of invasive annual grasses in OR.pdf (3.52 MB)
Sehrsweeney M, Fischer APaige. Governing ecosystem adaptation: An investigation of adaptive capacity within environmental governance networks. Environmental Science and Policy. 2022;134:46-56.PDF icon Sehrsweeney and Fischer_2022_Governing EcosystemAdaptation_Investigation of Adaptive Capacity within Enviro gov networks.pdf (6.71 MB)
Mockrin MH, Helmers D, Martinuzzi S, Hawbaker TJ, Radeloff VC. Growth of the wildland-urban interface within and around U.S. National Forests and Grasslands, 1990–2010. Landscape and Urban Planning. 2022;218.PDF icon Mockrin et al_2021_Growth of WUI around national forests and grasslands.pdf (2.44 MB)
Millington JDA, Perkins O, Smith C. Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling. Fire. 2022;5(4).PDF icon Millington et al_2022_Human Fire Use and Mgmt- A Global Database of Anthropogenic Fire Impacts for Modelling.pdf (3.75 MB)
Downing WM, Dunn CJ, Thompson MP, Caggiano MD, Short KC. Human ignitions on private lands drive USFS cross‑boundary wildfire transmission and community impacts in the western US. Scientific Reports. 2022;12(2624).PDF icon Downing et al_2022_Human ignitions on private lands drive USFS cross-boundary transmission.pdf (5.32 MB)
Li Z, Angerer JP, Wu B. The impacts of wildfires of different burn severities on vegetation structure across the western United States rangelands. Science of The Total Environment. 2022;845(157214).PDF icon Li et al_2022_Sci total Envir_Impacts of wildfires of different burn severities on veg structure across western US rangelands.pdf (2.58 MB)
Essen M, McCaffrey S, Abrams J, Paveglio T. Improving wildfire management outcomes: shifting the paradigm of wildfire from simple to complex risk. Journal of Environmental Planning and Management. 2022;Online.PDF icon Essen et al 2022_Improving WF Mgmt outcomes.pdf (663.56 KB)
Wickham SB, Augustine S, Forney A, et al. Incorporating place-based values into ecological restoration. Ecology and Society. 2022;27(3).PDF icon Wickham et al_2022_Ecol and Soc_Incorporating place-based values into ecological restoration.pdf (2.01 MB)
Kalashnikov DA, Schnell JL, Abatzoglou JT, Swain DL, Singh D. Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States. Science Advances. 2022;8.PDF icon Kalashnikov et al_2022_Fine Particulate Matter.pdf (3.24 MB)
Busby SU, Holz A. Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires. Frontiers in Forests and Global Change. 2022;5.PDF icon Busby and Holz_Frontiers_Interactions between fire refugia and climate-enviro conditions determine recovery.pdf (4.67 MB)
Orysiak J, Młynarczyk M, Piec R, Jakubiak A. Lifestyle and environmental factors may induce airway and systemic inflammation in firefighters. Environmental Science and Pollution Research. 2022;29:73741–73768.PDF icon Orysiak et al_2022_EnviroScieneandPollResearch_Lifestyle and enviro factors may induce airway and systemic inflammation in firefighters.pdf (1.3 MB)
Goldstein D, Kennedy EB. Mapping the ethical landscape of wildland fire management: setting an agendum for research and deliberation on the applied ethics of wildland fire. International Journal of Wildland Fire. 2022;Online.PDF icon Goldstein and Kennedy_2022_IJWF_Mapping the ethical landscape of wildland fire management.pdf (900.38 KB)
Wollstein K, O’Connor C, Gear J, Hoagland R. Minimize the bad days: Wildland fire response and suppression success. Rangelands. 2022;8(47).PDF icon Wollstein et al_2022_Minimize the bad days_Wildland fire response and suppression success.pdf (1.21 MB)
Cattau ME, Mahood AL, Balch JK, Wessman CA. Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States. Fire. 2022;5.PDF icon Cattau et al_Modern Pyromes_Biol patterns of fire characteristics across contiguous US.pdf (1.85 MB)
Jones BA, McDermott S, Champ PA, Berrens RP. More smoke today for less smoke tomorrow? We need to better understand the public health benefits and costs of prescribed fire. International Journal of Wildland Fire. 2022;31(10):918–926.PDF icon Jones et al_2022_IJWF_More smoke today for less smoke tomorrow_We need to better understand public health benefits and costs of rx fire.pdf (2.41 MB)
Mahood AL, Lindrooth EJ, Cook MC, Balch JK. Open Scientific Data: Country-level fire perimeter datasets (2001–2021). Scientific Data. 2022;9(458).PDF icon Mahood et al_2022_scientific data_country-level fire perimeter.pdf (2.18 MB)
Coughlan MR, Huber-Stearns H, Clark B, Deak A. Oregon Wildfire Smoke Communications and Impacts: An Evaluation of the 2020 Wildfire Season. Ecosystem Workforce Program Working Paper. 2022;111. Available at: https://scholarsbank.uoregon.edu/xmlui/bitstream/handle/1794/27179/OHA-smoke-survey-report_Final.pdf?sequence=3&isAllowed=y.PDF icon OHA-smoke-survey-report_2020 Wildfires_Final.pdf (5.71 MB)
Station PNorthwest. Passive or Active Management? Understanding Consequences and Changes After Large Stand-Replacing Wildfires. Science Findings. 2022;(247):1-6. Available at: https://www.fs.fed.us/pnw/sciencef/scifi247.pdf.PDF icon PNW Research Science Findings_2022_Passive or Active Management.pdf (1.18 MB)
Rao K, Williams PA, Diffenbaugh NS, Yebra M, Konings AG. Plant-water sensitivity regulates wildfire vulnerability. Nature Ecology & Evolution. 2022;Online.PDF icon Rao et al_2022_Plant-water_sensitivity_regulates_wildfire_vulnerability.pdf (2.41 MB)
Churchill DJ, Jeronimo SMA, Hessburg PF, et al. Post-fire landscape evaluations in Eastern Washington, USA: Assessing the work of contemporary wildfires. Forest Ecology and Management. 2022;504(2022).PDF icon Churchill et al 2022 (assessing the work of contemporary wildfires).pdf (12.39 MB)
Thompson MP, O’Connor CD, Gannon BM, et al. Potential operational delineations: new horizons for proactive, risk-informed strategic land and fire management. Fire Ecology. 2022;18.PDF icon Thompson et al_2022_FireEcol_PODs as New horizons for proactive risk-informed strategic land and fire mgmt.pdf (7.5 MB)
Plantinga AJ, Walsh R, Wibbenmeyer M. Priorities and Effectiveness in Wildfire Management: Evidence from Fire Spread in the Western United States. Journal of the Association of Environmental and Resource Economists. 2022.PDF icon Plantinga et al_2022_Priorities and Effectiveness in Wildfire Mgmt_Evidence from Fire Spread in the Western US.pdf (1.31 MB)
Miller RK, Richter F, Theodori M, Gollner MJ. Professional wildfire mitigation competency: a potential policy gap. International Journal of Wildland Fire. 2022;31(7).PDF icon Miller et al 2022_Professional wildfire mitigation competancy_A potential policy gap.pdf (783.41 KB)

Pages