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Abstract: Annual burned area has increased in California over the past three decades as a result
of rising temperatures and a greater atmospheric demand for moisture, a trend that is projected
to continue throughout the 21st century as a result of climate change. Here, we implement a bias-
correction and statistical downscaling technique to obtain high resolution, daily meteorological
conditions for input into two fire weather indices: vapor pressure deficit (VPD) and the Canadian
Fire Weather Index System (FWI). We focus our analysis on 10 ecoregions that together account for
the diverse range of climates, ecosystems, topographies, and vegetation types found across the state
of California. Our results provide evidence that fire weather conditions will become more extreme
and extend into the spring and fall seasons in most areas of California by 2100, extending the amount
of time vegetation is exposed to increased atmospheric demand for moisture, and heightening the
overall risk for the ignition and spread of large wildfire. The ecoregion-level spatial scale adopted
for this study increases the spatial specificity of fire weather information, as well as the resolution
with which fire and land managers can implement strategies and counter-measures when addressing
issues related to climate change.

Keywords: fire weather; California wildfires; vapor pressure deficit; statistical downscaling; Canadian
Fire Weather Index System

1. Introduction

Numerous research studies indicate that wildfire activity in the western United States
has increased over the past few decades due primarily to increases in temperature, decreases
in precipitation, and increases in atmospheric aridity [1–5]. Furthermore, by the end of the
21st century, anthropogenic global warming will contribute to increased risk of extreme
fire weather through the effect of rising temperatures [6]. However, the impacts of climate
on fire regime vary dramatically by ecosystem, predominant vegetation types, topography,
and human activity. These complex relationships between climate and wildfire are apparent
in California, where climate, vegetation, and topography vary significantly from east to
west and north to south.

For example, large parts of southern California experience near continuous high fire
danger in the summer and fall, as high temperatures, seasonal drought, and the onset of
the Santa Ana wind season combine to increase the risk of severe wildfire. In these areas,
wildfire is rarely limited by weather conditions governing fire spread, but by availability of
fuel to burn. On the other hand, in forested ecosystems, where deep rooted vegetation is
less susceptible to short-term variations in moisture, the limiting factor may be fire spread
potential or dried fuel available to burn [7,8]. Therefore, the effects of climate change on
wildfire in California, specifically projected increases in temperature and aridity, will not
impact all ecosystems equally, but will be strongly dependent on vegetation distribution and
will be more likely to place flammability-limited ecosystems (i.e., forested) at a greater risk
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for catastrophic wildfire [9,10]. Furthermore, understanding the broad range of outcomes
regarding the impacts of climate change on extreme fire weather risk is critical because
climate change may lead to the loss of existing climate regimes and the emergence of novel
ecosystem states, impacting the distribution of biomass (i.e., continuity and flammability),
fire spread potential, and ignition [11,12].

One of the most valuable tools for assessing historical and projected climate variability,
especially the meteorological variables that govern wildfire on a regional scale, are global
climate models, or GCMs [13]. The Climate Model Intercomparison Project (CMIP) provides
a standardized platform for the collection and analysis of GCM model output with the intent
of studying natural and anthropogenic climate variability. The most recent release of GCM
output for the CMIP Phase 6 provides a new suite of climate model data for use in a wide
range of disciplines. While GCMs are often used for the evaluation of long-term variations
in climate, there are significant limitations to their use for the study of wildfire impact
assessment and fire weather potential. The main limitation is that climate model output is
typically of coarse resolution and is subject to significant bias [13]. The mismatch between
the spatial scale at which key variability in fire weather variables fluctuate (<10 km), and
that of GCM output (>100 km), creates a need to account for these spatial differences.

One method of adjusting the resolution of available GCM output to that which is
needed for the evaluation of fire weather variables is statistical downscaling. These meth-
ods allow for the reduction in systematic biases inherent to numerical weather prediction
systems, as well as an enhancement of grid cell resolution in order to account for the effects
of topography and other land surface features [14]. One method of statistical downscaling
for use in wildfire risk assessment is bias correction and spatial downscaling (BCSD) [13].
BCSD is a two-step process that involves the bias correction of coarse GCM data using local
observations that have been aggregated to the model’s resolution [13]. Bias correction tech-
niques include scaling, delta methods, and empirical quantile mapping. In addition, spatial
downscaling utilizes techniques such as linear or multiple regression to apply statistical
relationships (e.g., slope, y-intercept) derived from high resolution observational data to
coarse resolution GCM data in order to improve the resolution [15]. The major assumption
made with statistical downscaling methods is that of climate stationarity. It is assumed
that the relationships between the coarse and fine scale historical datasets, calculated by
the statistical model, will stay the same in the future (with climate change), and that when
these models are applied to projected datasets the outcomes will be valid [13–15].

In order to track changes in, and probability of, extreme fire weather over time, fire
weather indices are often calculated using weather station, reanalysis, or global climate
model data. Two commonly used fire weather indices are vapor pressure deficit (VPD) and
the Canadian Fire Weather Index System (CFWIS) [16,17]. The CFWIS relies on regular
inputs of noon-day temperature, 24 h precipitation accumulation, 10 m wind speed, and
relative humidity, and is comprised of six components: three fuel moisture codes and three
fire behavior metrics, with the primary purpose of assessing the effect of weather on fuels
and potential fires. In general, higher values indicate a more severe risk for ignition or
spread of large wildfire [17,18].

On the other hand, VPD, defined as the difference between saturation vapor pressure
and actual vapor pressure, is a commonly used metric for the quantification of atmospheric
aridity in relation to wildfire risk assessment, and is highly correlated with annual area
burned [1,2,19]. VPD accounts for the non-linear (exponential) relationship between sat-
uration vapor pressure and temperature, thus better representing moisture stress and
flammability [19]. In fact, maximum VPD in the entire United States is found each year
in the desert southwest region, not only affecting agricultural production via crop health
but increasing the risk of wildfire ignition and spread [19]. Furthermore, two-thirds of
historical (2001–2018) increases in extreme VPD in the western United States is attributable
to anthropogenic warming [20].

The objective of this research is to utilize bias correction and statistical downscaling to
enhance the spatial representations of CMIP6 simulations for the purposes of assessing the
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potential impacts of climate change on the occurrence of extreme fire weather. Bias corrected
and statistically downscaled daily CMIP6 data (~4 km spatial resolution), covering an
historical (1981–2010), mid-century (2041–2070), and late-century (2071–2100) period, will
be used as input for two fire weather indices, including the Canadian Fire Weather Index
(CFWIS; now referred to as FWI) and vapor pressure deficit (VPD). In order to determine the
effects of climate change on the occurrence of extreme fire weather in California ecoregions,
we investigate the frequency at which daily index values exceed the average daily historical
95th percentile. We also calculate the extent of each ecoregion that is likely to experience
values greater than the 30 year average spatial 95th percentile value for each time period.
In addition, time series analysis includes fire weather anomalies relative to an historical
period, as well as 30 year Julian-day averages. The diversity of factors that influence fire
regime in California, as well as the immense range of biophysical characteristics, require
an ecoregion scale analysis. The effects of climate change on extreme fire weather will
not be homogeneous, however, our fine scale analysis will allow policy makers and land
managers to anticipate changes in climate and determine the areas that are most likely to
experience the consequences of increased fire potential.

2. Materials and Methods
2.1. Study Area

The primary study area is California (Figure 1). We chose to analyze the effects of
climate change on extreme fire weather within ten ecoregions of California [21,22]. These
regions include the Southern California Mountains (SCM), Southern California Coast (SCC),
Central California Foothills (CCF), Central Valley (CV), North American Desert (NAD),
Sierra Nevada (SN), Klamath (K), Cascades (C), East Cascades (EC), and Marine West Coast
Mountains (MWCM).
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standing of how climate change may impact extreme fire weather relative to historical 
conditions within homogeneous regions of particular climate and vegetation types. 

2.2. Statistical Downscaling Method 
Daily near surface maximum air temperature, 24 h precipitation accumulation, 10 m 

wind speed, and 2 m relative humidity were acquired for three CMIP6 models (including 
MIROC6, EC-Earth3, and MRI-ESM2-0), for an historical (1981–2010), mid-century (2041–
2070), and late-century (2071–2100) period, from the data repository at the Earth System 
Grid Federation (https://esgf-node.llnl.gov/search/cmip6/, accessed on 1 January 2021). 
We derived daily relative humidity from specific humidity, sea level pressure, geopoten-
tial height, and near surface air temperature. Future climate projections for a mid- and 
late-century period were obtained for the Representative Concentration Pathway 
(RCP8.5), “high emissions” scenario. All bias correction and downscaling methods were 
completed using a 4 km gridded meteorological climate dataset called gridMET [23]. We 
used the entirety of the gridMET historical period (i.e., 1979–2014) to train the bias correc-
tion algorithm, and in order to avoid training and testing our BCSD output with the same 
data (i.e., gridMET), we validated the results of the BCSD methodology with two inde-
pendent observational datasets (see Section 2.3). 

Figure 1. Ecoregions of California, including the southern California Mountains (SCM), southern
California Coast (SCC), Central California foothills (CCF), Central Valley (CV), North American
Desert (NAM), Sierra Nevada (SN), Klamath (K), Cascades (C), East Cascades (EC), Marine West
Coast Mountains (MWCM), and North American Desert (NAD).
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Each of these regions is characterized by different dominant ecosystem types that give
rise to California’s diverse fire regimes, including vegetation, climate, soil types, land use,
and hydrology [22]. An ecoregion specific analysis will allow for a nuanced understanding
of how climate change may impact extreme fire weather relative to historical conditions
within homogeneous regions of particular climate and vegetation types.

2.2. Statistical Downscaling Method

Daily near surface maximum air temperature, 24 h precipitation accumulation, 10 m
wind speed, and 2 m relative humidity were acquired for three CMIP6 models (includ-
ing MIROC6, EC-Earth3, and MRI-ESM2-0), for an historical (1981–2010), mid-century
(2041–2070), and late-century (2071–2100) period, from the data repository at the Earth
System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/, accessed on 1 January
2021). We derived daily relative humidity from specific humidity, sea level pressure, geopo-
tential height, and near surface air temperature. Future climate projections for a mid- and
late-century period were obtained for the Representative Concentration Pathway (RCP8.5),
“high emissions” scenario. All bias correction and downscaling methods were completed
using a 4 km gridded meteorological climate dataset called gridMET [23]. We used the
entirety of the gridMET historical period (i.e., 1979–2014) to train the bias correction al-
gorithm, and in order to avoid training and testing our BCSD output with the same data
(i.e., gridMET), we validated the results of the BCSD methodology with two independent
observational datasets (see Section 2.3).

A bias correction technique known as empirical quantile mapping was applied sep-
arately to the four climate variables for each of the three CMIP6 model outputs. This
algorithm adjusted the simulation’s (i.e., CMIP6) empirical distribution based on observed
patterns (i.e., gridMET) and was used to correct both historic and future climate projections
generated by the CMIP6 models [14]. Bias correction methods are often applied to GCM
output in order to address inherent biases that arise when modeling earth system processes.
The bias corrected GCM data was interpolated to the high-resolution observational grid
(i.e., gridMET) using a thin plate spline function and the relationship between the two
grids were then estimated to generate regression functions for each grid cell [24]. The linear
regression models were then applied to the bias corrected and interpolated GCM data to
complete the downscaling.

To elaborate, this spatial downscaling methodology uses regression functions to es-
timate the linear relationships (in this case the slope and intercept) between the original,
high-resolution gridMET data and a “smoothed” estimate, before applying those statis-
tical parameters to the bias-corrected CMIP6 data in a simple linear model to obtain the
final downscaled, high-resolution output [25]. For this research, the study area domain
was comprised of approximately 70–100 grid cells in the CMIP6 simulations, whereas the
gridMET observational data has ~81,000 locations over the same area. In the first step, a
thin-plate spline interpolation was used to predict CMIP6 values at the gridMET scale,
with no addition of topographic or climatological information. This resulted in “smoothed”
CMIP6 data that is identical to the original data but sampled at a much greater frequency.
In the next step, a linear regression function was derived from the raw and smoothed grid-
MET datasets at each grid cell location, for each month of the year (~81,000 grid cells × 12).
These month-specific linear regression models were applied to the “smoothed” CMIP6 data
to obtain the final downscaled product for each variable.

A square-root transformation was applied to the precipitation data before downscaling
to account for its skewed distribution [26,27]. The final bias-corrected and downscaled
product of each variable was averaged to obtain an ensemble mean and used in the
calculation of the two fire weather indices. Daily maximum temperature, 24 h rainfall, 10 m
wind speed, and daily minimum relative humidity were used to calculate FWI, while daily
maximum temperature and daily minimum relative humidity are used to calculate VPD.
Due to the fact that maximum temperature and minimum relative humidity are used for
the calculation of VPD, we make it clear that VPD may be considered “maximum VPD”.

https://esgf-node.llnl.gov/search/cmip6/
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2.3. Climate Model Simulations of Extreme Fire Weather in California Ecoregions

The BCSD CMIP6 GCM data were used for three primary analyses of extreme fire
weather in California, as well as an additional analysis of Julian-day climatology. We used
maximum daily surface temperature, minimum relative humidity, and 2 pm wind speed, as
daily noon-time data requirements were not available for all models. Prior to the analysis,
1979–2014 BCDS product was validated against two observational analysis datasets, the
North American Regional Reanalysis (NARR, psl.noaa.gov/data, accessed on 1 March
2022) and TerraClimate [28,29].

Analysis of extreme fire weather consisted of four main components. First, we calcu-
lated the June, July, August (JJA) and the September, October, November (SON) seasonal-
mean FWI and VPD averages for each ecoregion, as well as for the entire state of California,
for an historical (1981–2010), mid-century (2041–2070), and late-century (2071–2100) time
period. The historical mean, calculated individually for each ecoregion and for each season,
was used as a baseline with which the mid-century and late-century anomalies were calcu-
lated. In addition, the relative change (relative to the historical time period) of FWI and
VPD in the mid- and late-century periods was calculated. We consider a unique baseline for
each ecoregion, in addition to a California state-wide assessment, for each season, in order
to properly account for the entire range of climate conditions found across California, and
to assess projected changes in each zone relative to their particular local historical climate.

Second, the seasonal, ecoregion specific, daily FWI and VPD averages were used to
calculate a 95th percentile value (FWI95; VPD95), which was then used as a threshold for
the mapping of the frequency with which fire weather indices exceed that 95th percentile
value during the historical, mid- and late-century periods. The maximum occurrence of a
given index value above the 95th percentile is 91, or, in other words, all the days in that
season in a given year. In order to evaluate the spatial distribution of extreme fire weather
throughout the 21st century, the difference in the total number of days per year that exceed
the 95th percentile was taken between the mid- and late-century and the historical period.
In addition, the ecoregion average number of days per year that exceed the 95th percentile
was calculated.

Third, 30 year JJA and SON seasonal average FWI and VPD were calculated for each
ecoregion. Considering all grid points within each ecoregion for that 30 year average,
the 95th percentiles are calculated and subsequently used as thresholds to determine
the extent within each region that will experience FWI and VPD exceeding those values.
Frequency distributions of 30 year spatial average FWI and VPD values were plotted for
each ecoregion.

Finally, Julian-day averages spanning the entire 30 year periods were calculated for
FWI and VPD. Daily climatologies intend to show changing peaks in average maximum
values, as well as the lengthening or shortening of each ecoregion’s fire season.

3. Results
3.1. Validation of Historical Simulations

Before investigating the impacts of climate change on extreme fire weather, we evalu-
ate the CMIP6 Raw and BCSD ensembles against an observational ensemble that includes
NARR and TerraClimate. However, TerraClimate has not released a minimum relative
humidity dataset, so in this case, CMIP6 was validated exclusively with NARR. Spatial
statistics, including correlation, bias, and root-mean square error (e.g., sCor, sBias, sRMSE)
were calculated after resampling all observations and Raw CMIP6 data to the high resolu-
tion BCSD (~4 km). In this way, the improved skill of the bias correction and downscaling
was demonstrated against a basic resampling. Temporal statistics (tCor, tBias, tRMSE)
were calculated using monthly averages spanning the entire historical period (1979–2014).
The difference in resolution between the TerraClimate observations (~4 km), raw MIROC6
(1.4◦ × 1.4◦), and BCSD ensemble (~4 km) are shown below for annual average maximum
temperature in 1979 (Figure 2).

psl.noaa.gov/data
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Figure 2. Average maximum temperature for 1979 (a) TerraClimate (b) Raw MIROC6 (c) BCSD
Ensemble. Units: ◦C.

Spatial correlations between CMIP6 BCSD and the observations were high for all
variables, especially for maximum temperature, precipitation accumulation, and minimum
relative humidity, with 0.97, 0.88, and 0.87, respectively—all of which were higher relative to
the CMIP6 Raw (Table 1). Furthermore, sRMSE and sBias were higher for the CMIP6 BCSD
relative to the CMIP6 Raw for all variables except temperature, which showed a higher
sBias in the CMIP6 Raw. A substantially higher sCor and sBias in the wind speed resulted
between the Raw and the BCSD, with sCor increasing by 0.4 and sBias by 0.38 (Table 2).

Table 1. Spatial statistics (i.e., sCor) evaluating a 36 year average historical period (1979–2014) of the
raw CMIP model ensemble and the bias-corrected and spatially downscaled CMIP model ensemble,
against the NARR/TerraClimate validation dataset. Temporal statistics (i.e., tCor) are based on
36 years of monthly averages. Standard deviation is shown in parentheses. Spatial correlations are
significant at p < 0.001.

CMIP Raw CMIP BCSD

Max Temperature
sCor/tCor 0.82/0.97 0.95/0.97
sBias/tBias 0.74 (±2.76)/−0.76 (±0.8) 1.17 (±1.62)/−1.18 (±0.77)
sRMSE/tRMSE 2.11 (±1.93)/2.45 (±0.46) 1.55 (±1.26)/2.22 (±0.49)
Daily Precip Acc
sCor/tCor 0.88/0.61 0.88/0.61
sBias/tBias 0.96 (±0.55)/−0.93 (±0.57) 0.42 (±1.19)/−0.42 (±0.54)
sRMSE/tRMSE 0.97 (±0.52)/1.97 (±0.55) 0.64 (±1.08)/1.64 (±0.44)
Min. Rel Hum
sCor/tCor 0.79/0.86 0.87/0.86
sBias/tBias 10.75 (±8.03)/−13.72 (±3.98) −8.3 (±6.91)/5.51 (±3.83)
sRMSE/tRMSE 12.18 (±5.62)/16.57 (±3.41) 8.48 (±6.69)/12.58 (±3.92)
Wind Speed
sCor/tCor 0.3/0.47 0.7/0.51
sBias/tBias 0.67 (±0.68)/−0.69 (±0.09) 0.29 (±0.65)/−0.29 (±0.09)
sRMSE/tRMSE 0.8 (±0.51)/0.88 (±0.08) 0.51 (±0.5)/0.51 (±0.08)
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Table 2. Ecoregion average number of VPD95 and FWI95 days per year in each time period.

CA SCM SCC CCF K C EC SN CV MWCM NAD

JJA
FWI
Hist 25 10 24 14 11 9 8 13 10 12 15
Mid 33 19 31 24 12 19 17 23 29 3 26
Late 34 20 32 26 13 20 18 22 31 3 29
VPD
Hist 23 12 18 15 11 10 7 17 8 18 22
Mid 39 33 33 39 31 33 33 35 34 31 43
Late 47 43 39 49 44 46 47 42 48 40 52
SON
FWI
Hist 12 8 13 9 6 7 6 8 7 7 8
Mid 16 11 16 13 9 13 12 14 15 3 11
Late 18 14 18 15 9 15 15 16 17 3 14
VPD
Hist 12 9 11 9 7 7 6 10 6 10 10
Mid 21 18 19 21 18 18 17 20 19 19 19
Late 27 26 26 27 25 25 25 26 27 24 26

tCor stayed the same for maximum temperature, daily precipitation accumulation and
minimum relative humidity, but was higher for wind speed in CMIP6 BCSD relative to the
CMIP6 Raw. Similar to the spatial statistics, maximum temperature’s tBias was the only
metric that was not lower in the CMIP6 BCSD.

In addition to the statistical metrics, a monthly climatology of each variable was gen-
erated for the CMIP6 Raw, CMIP6 BCSD, and the observational ensemble (Figure 3). BCSD
successfully shifted the summertime temperatures downwards towards the observations,
however, temperatures were slightly overestimated in the winter months (Figure 3a). Both
the CMIP6 Raw and BCSD overestimated daily rainfall accumulation in the winter, however,
the BCSD more closely approximated the observations throughout the year (Figure 3b).
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The NARR minimum relative humidity fell between the CMIP6 Raw and BCSD
monthly climatology, however, even though BCSD slightly underestimated winter relative
humidity, the difference was smaller in all months than it was for CMIP6 Raw (Figure 3c).
CMIP6 BCSD 10 m wind speed was very well simulated in California compared to CMIP6
Raw (Figure 3d).

3.2. Fire Weather Anomalies and Relative Change

FWI time series anomalies indicated increasing trends in both the mid- and late-century
periods in all ecoregions, except the MWCM, which displayed a decrease in average FWI
relative to the historical period (Figure 4). JJA relative change during the mid-century
period ranged from −21.62 in the MWCM to 19.41 in the Central Valley, while late-century
change ranged from −20.9 in the MWCM to 21.88 in the Central Valley. Furthermore, mid-
century SON relative change ranged from −7.73 in the MWCM to 21.69 in the Cascades,
and −8.23 in the MWCM to 25.44 in the Cascades during the late-century period.
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MWCM decreased relative to the historical baseline in both seasons, however, decreases 
during the SON were of much smaller magnitude, and are basically a continuation of his-
torical conditions. In both the mid- and late-century periods, the central and northern Cal-
ifornia C, EC, SN, and Central Valley ecoregions experienced greater relative change in 
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the mid-century period ranged from 14.96 in the SCC to 25.14 in the EC, and 22.08 in the 
SCC to 39 in the K during the late-century. On the other hand, mid-century SON vapor 
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Figure 4. Canadian Fire Weather Index anomaly relative to the historical period of 1981–2010. Solid
black line represents the summer season of June, July, and August, while the solid red line represents
the fall season of September, October, November. The dashed vertical black line represents the end of
the historical period, while the dashed vertical blue and red lines represent the breaks between the
mid- and late-century periods, respectively. The black and red text within the figure is the relative
change (%) for the mid- and late-century periods (relative to the historical period) in the JJA and
SON seasons, respectively. (a) California; (b) Southern California Mountains; (c) Southern California
Coast; (d) Central California Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada;
(i) Central Valley; (j) Marine West Coast Mountains; (k) North American Desert.

Overall, JJA and SON anomalies showed increasing average FWI between 2041–2100
(except MWCM), however, relative change during the SON season was greater than JJA
in all ecoregions except the Central Valley during the mid-century period. FWI in the
MWCM decreased relative to the historical baseline in both seasons, however, decreases
during the SON were of much smaller magnitude, and are basically a continuation of
historical conditions. In both the mid- and late-century periods, the central and northern
California C, EC, SN, and Central Valley ecoregions experienced greater relative change in
FWI compared to the southern California ecoregions SCC and SCM.
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JJA and SON vapor pressure deficit increased relative to an historical baseline in all
ecoregions during both the mid- and late-century time periods (Figure 5). Relative change
of VPD during the fall was greater than in the summer in all ecoregions. JJA VPD during
the mid-century period ranged from 14.96 in the SCC to 25.14 in the EC, and 22.08 in the
SCC to 39 in the K during the late-century. On the other hand, mid-century SON vapor
pressure deficit ranged from 15.68 in the SCC to 27.46 in the K, and from 26.16 in the SCC
to 41.91 in the K ecoregion, during the late-century period.
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Figure 5. Vapor pressure deficit anomaly relative to the historical period of 1981–2010. Solid black
line represents the summer season of June, July, and August, while the solid red line represents the
fall season of September, October, November. The dashed vertical black line represents the end of
the historical period, while the dashed vertical blue and red lines represent the breaks between the
mid- and late-century periods, respectively. The black and red text within the figure is the relative
change (%) for the mid- and late-century periods (relative to the historical period) in the JJA and
SON seasons, respectively. (a) California; (b) Southern California Mountains; (c) Southern California
Coast; (d) Central California Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada;
(i) Central Valley; (j) Marine West Coast Mountains; (k) North American Desert. Units: kPa.

Similar to FWI, JJA and SON relative change in VPD in the mid- and late-century
periods increased more in the central and northern California ecoregions of the K, C, EC,
SN, and Central Valley compared to the southern California ecoregions SCC and SCM
(Figure 5). While FWI decreased in the MWCM ecoregion relative to its historical baseline
(Figure 4j), VPD increased in both the mid- and late-century periods (Figure 5j). Differences
between JJA and SON seasonal changes in VPD were greater than for FWI, however lower
average historical values during SON led to comparable relative change (to the JJA season)
in the mid- and late-century periods. Overall, both JJA and SON vapor pressure deficit is
expected to increase linearly throughout 2041–2100, in all ecoregions.

3.3. 95th Percentile Exceedance Maps

To further investigate the impact of climate change on extreme fire weather, we
calculated the number of days that FWI and VPD were greater than or equal to the 95th
percentile (calculated using a time series of daily average values for each ecoregion, not
per pixel) (Figure 6). On average, JJA VPD95 days increased substantially in all ecoregions
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in both the mid- and late-century periods (Table 2). The average number of days per year
with VPD greater than the 95th percentile doubled in all ecoregions by 2100. In fact, from
2071–2100, over half the total number of summer days in the CCF, C, EC, CV, and NAD
ecoregions had a VPD greater than the historical 95th percentile.
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Figure 6. Average frequency (in days/yr) with which VPD and FWI exceed the ecoregion-specific
daily average JJA 95th percentile in the mid-century (left) and late-century (right) relative to the
historic period. Higher values indicate more JJA days each year that exceeded the 95th percentile.
(a,b) Vapor pressure deficit (c,d) Fire Weather Index.

The largest increases in VPD95 days occurred in the desert southwest region of Califor-
nia, particularly in the late-century period, where some areas are expected to experience his-
torical VPD95 on nearly two-thirds of all summer days. Other areas expected to experience
large increases in VPD95 days are the SCC ecoregion east of Los Angeles (34◦ N, 117◦ W),
the southern portion of the Central Valley and the Central California foothills, the west-
ern border of the Sierra Nevada, and scattered areas of the northern California Klamath,
Cascades, and Eastern Cascades regions (Figure 6a–c).

JJA FWI95 days increased in both the mid- and late-century in all ecoregions except
the MWCM, which experienced an average decrease in FWI95 days (Table 2). While the
increase in average number of days with FWI95 is smaller than that of VPD95, the SCM, C,
EC, and CV double the number of FWI95 days by 2100. In addition, the greatest magnitude
of change of FWI95 days occurred between the historical and the mid-century periods; the
total change between the mid- and late-century was much smaller (Table 2). The most
substantial increases in FWI95 days occurred in the desert southwest, the CV, the southern
tip of the SN, the CCF, and the C and EC in northern California. However, there was a clear
pattern of decreased numbers of FWI95 and VPD95 days (particularly FWI) in the mid- and
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late-century periods along the coast of California where the ocean moderates temperature.
Furthermore, there was an apparent influence of topography in northern California (K, C,
SN ecoregions), where high elevation areas showed little or even negative change, while,
for example, the lower elevation, western slopes of the Sierra Nevada showed pronounced
positive change. The dramatic increase in VPD95 and FWI95 days in the NAD ecoregion is
an important climatic signal for human health and well being, as well as for agriculture,
but these increases are not likely to translate into increases in annual area burned because
of a near total lack of continuous and flammable vegetation.

Historical 95th percentile thresholds were also calculated for each ecoregion for the
SON season. The average number of VPD95 days increased in all ecoregions (Table 2). In
fact, the average number of VPD95 days tripled by the end of the late-century period in
the CCF, K, C, EC, and CV ecoregions, and doubled in the SCC, SN, MWCM, and NAD
ecoregions (relative to the historical period). The average number of VPD95 days in the
late-century period was substantially lower than it was in JJA, however, these results still
imply that VPD is expected to increase dramatically for the entire duration of the summer
and fall in all ecoregions (Table 2). Increases in the number of SON VPD95 days occurred
in many of the same areas as JJA, including the NAD, the western and lower elevation
portions of the Sierra Nevada, the southern region of the Central Valley, the southern
California coast, and Central Foothills, as well as large portions of northern California’s
ecoregions, including Klamath, Cascades, and Eastern Cascades (Figure 7a–c).
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Figure 7. Average frequency (in days/yr) with which VPD and FWI exceed the ecoregion specific
daily average SON 95th percentile in the mid-century (left) and late-century (right) relative to the
historic period. Higher values indicate more SON days that exceeded the 95th percentile. (a,b) Vapor
pressure deficit (c,d) Fire Weather Index.
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SON FWI95 days increased in all ecoregions except the MWCM, which decreased from
an average of 7 days/yr between 1981–2010 to 3 days/yr between 2071–2100 (Table 2). The
C, EC, and CV ecoregions doubled in the number of days experiencing FWI values greater
than the historical 95th percentile. Overall changes in the occurrence of FWI95 days were
smaller for the SON season compared to JJA, however, many of the same areas that were
impacted in the summer show continued increases in extreme fire weather carrying into
the fall, relative to the fall historical 95th percentile (Figure 7f). Some of the most affected
areas include the region east of Los Angeles (34◦ N, 117◦ W), the south western region of
the CCF (35–36◦ N, 120–121◦ W), western border of the Sierra Nevada, and the northern
California Cascades and Eastern Cascades (Figure 7). Similar to the summer season, there
was a moderating influence on FWI along the coast of California, as well as a topographic
influence in the K and SN ecoregions. In fact, nearly the entire state of California, apart
from the coastal and high elevation areas, displayed a positive signal in VPD95 by the end
of the 21st century.

3.4. Fire Weather Frequency Distributions

The 30 year spatial averages of FWI and VPD were calculated for each of the 10 ecoregions
during the historical, mid- and late-century periods. The frequency with which each FWI and
VPD value occurred was plotted (as an area), along with the ecoregion specific 95th percentile
value and the area that exceeded the threshold value in the three time periods (Figure 8).
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The total land area that was projected to experience FWI greater than the 95th per-
centile value increased in all ecoregions apart from Klamath and the Marine West Coast 
Mountains (Figure 8e,j). The largest increases in area occurred in the Central Valley and 
the Cascades ecoregions (over seven and six times the historical area, respectively). 

Figure 8. Frequency distribution depicting the area experiencing particular JJA FWI values. The
dashed line represents the ecoregion specific 30 year average spatial 95th percentile value. The black,
blue, and red lines represent the historical, mid-century, and late-century time periods, respectively.
The color-coded text are areal units (km2) experiencing greater than the 95th percentile value for
that ecoregion. (a) California; (b) Southern California Mountains; (c) Southern California Coast;
(d) Central California Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada;
(i) Central Valley; (j) Marine West Coast Mountains; (k) North American Desert.

The total land area that was projected to experience FWI greater than the 95th percentile
value increased in all ecoregions apart from Klamath and the Marine West Coast Mountains
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(Figure 8e,j). The largest increases in area occurred in the Central Valley and the Cascades
ecoregions (over seven and six times the historical area, respectively). Furthermore, the
increase in area experiencing extreme fire weather in the SCM and the EC, followed by the
SCC, CCF, and NAD ecoregions, increased by a factor of four and three, respectively. In
many cases, including in the SCM, K, C, EC, SN, CV, and NAD ecoregions, the distribution
of average FWI values shifted towards the 95th percentile threshold, indicating that mid-
and late-century average FWI values could be closer to what is now considered extreme.
The JJA FWI95 percentile values ranged from 15.5 in the Cascades to 28.4 in the North
American Desert, while the state-wide California JJA FWI95 was 26.5.

The increase in the amount of land area likely to experience FWI greater than the his-
torical 95th percentile was even greater for SON than JJA, however, the MWCM ecoregion
is projected to have a decline in the total land area with extreme fire weather (Table 3). The
ecoregions projected to see the largest changes include the Central Valley, Cascades, and
SCM, with ten, eight, and seven times the area under 95th percentile FWI by late-century,
relative to the historical period. In addition, the NAD, EC, and SCC ecoregions increased
by a factor of six, and the SN by a factor of five. Whereas the area within the Klamath
ecoregion with FWI greater than the 95th percentile decreased in the summer, FWI95 area
is projected to double in SON by the end of the late-century. Additionally, the SON FWI95
percentile values ranged from 8.71 in the Cascades to 16.6 in the North American Desert,
while the state-wide California SON FWI95 was 15.4.

Table 3. The extent of each ecoregion experiencing SON FWI and VPD greater than the 95th percentile.
Calculated from the ecoregion 30 year average. Units: km2.

SON CA SCM SCC CCF K C EC SN CV MWCM NAD

FWI
Hist 19,920 672 976 3728 1648 656 896 2336 2144 656 5328
Mid 14,552 3088 5344 11,664 3680 5040 4320 9200 18,368 80 19,840
Late 64,672 4848 6784 16,000 4016 5840 5824 12,048 23,520 64 32,784
VPD
Hist 18,992 768 944 3632 1552 672 848 2400 2288 656 5520
Mid 54,192 6656 8752 27,424 15,168 5728 11,136 14,992 27,632 4368 29,552
Late 109,344 9520 11,504 46,400 21,712 9568 15,792 22,096 42,048 6048 49,712

Ecoregion increases in JJA VPD95 area were even more substantial than FWI95 (Figure 9).
The increase in VPD is so significant that the distribution of JJA VPD values shifts in a way
that the peak VPD value in the mid- and late-century will exceed that of the historical 95th
percentile threshold (Figure 9b–d,f,g,i,k). The largest increases in area exceeding VPD95
occurred in the Central Valley and East Cascades, with a 17-fold increase, followed by
the Cascades (13-fold), and the CCF and SCC (12-fold). The JJA VPD95 percentile values
ranged from 3.12 in the MWCM to 6.98 in the North American Desert, while the state-wide
California JJA VPD95 was 6.6.

The average projected area with extreme SON VPD was also large, implying that
conditions in California will be conducive to wildfire for a minimum of half the year,
extending the typical fire season into the fall, and contributing to the widespread desiccation
of fuels. Unlike with patterns seen in the MWCM FWI values, VPD95 area was projected to
increase in the MWCM in both the JJA and SON by a factor of seven and nine, respectively
(Figure 9j and Table 2). Additionally, the SON VPD95 percentile values ranged from 2.01 in
the East Cascades to 4.28 in the North American Desert, while the state-wide California JJA
VPD95 was 3.97.
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Figure 9. Frequency distribution depicting the area experiencing particular JJA VPD values. The
dashed line represents the ecoregion specific 30 year average spatial 95th percentile value. The black,
blue, and red lines represent the historical, mid-century, and late-century time periods, respectively.
The color-coded text are areal units (km2) experiencing greater than the 95th percentile value for
that ecoregion. (a) California; (b) Southern California Mountains; (c) Southern California Coast;
(d) Central California Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada;
(i) Central Valley; (j) Marine West Coast Mountains; (k) North American Desert.

3.5. Fire Weather Index Julian Day Climatologies

Julian day climatologies of VPD indicated an increase in peak VPD in the summer, as
well as an earlier start and a delayed end to the fire season in all ecoregions of California
(Figure 10). For example, by 2100, the average onset of high spring VPD (defined here as
VPD ≥ 3) is a month or more earlier in the SCC, CCF, K, C, SN ecoregions. Furthermore, the
decrease of VPD below the critical value is delayed by a month or more in the C, EC and SN.
Our results indicated that climate change will likely increase summer and autumn average
VPD and lengthen the amount of time each year that conditions favor large wildfires in
California (Figure 10).

Julian day climatologies of FWI indicated that the average summer peak FWI value
will increase, and the fire season, defined here by the onset of average FWI greater than 15,
will begin earlier and end later in the mid- and late-century periods relative to the historic
period. However, the effect of climate change on the growth of the fire season was greater
for VPD than it was for FWI (Figure 11). The greatest impact was to the onset of the fire
season, with late-century average FWI exceeding a value of 15 anywhere from 6 days (SCC)
to one month (NAD) before the historical average.
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Studies show that the role of temperature and humidity are strongest in FWI, with
precipitation and wind speed playing important, but secondary roles [30,31]. However,
our results indicated that the increase of VPD in the mid- and late-century periods was
much greater than FWI, especially in the MWCM, which experienced a decrease in summer
FWI, implying that precipitation and wind patterns can play a strong role in FWI trajectory
(Figure 11j). However, the sensitivity of the FWI to incremental changes in input variables
is outside the scope of this study.

4. Discussion
4.1. Extreme Fire Weather in California’s Future Will Become More Severe and Last Longer

California’s fire weather season length has increased in the past three decades due
to increases in surface air temperature, decreases in relative humidity, and longer annual
rain-free periods [30,32]. Our results provide further evidence that fire weather conditions
conducive to large wildfires will become more extreme and extend later into the fall season
in most areas of California by 2100 [3,30]. The peak effects of hot and dry summers will
be extended by 30 days into late October and November. This timing will coincide with
the Santa Ana wind season (which normally runs from October to March), as well as a
projected delay in the onset of the rainy season—producing a high risk period during a
time that has normally been outside of California’s typical “fire season” for emergency
preparedness [30,33]. The catastrophic consequences of severe fire weather towards the
end of the typical California fire season were seen in 2020, with the August Complex Fire
(August 2020), SCU Lightning Complex (August 2020), Creek (September 2020), LNU Light-
ning Complex (August 2020), and the North Complex (August 2020)—together accounting
for five of the 10 largest wildfires in California history [34,35]. In addition, the increase
in land area experiencing extreme VPD and FWI expected by the end of the mid-century
(2070) and late-century (2100) period, as well as the extension of the fire season late into
the fall, will prime large portions of California for the spread of large wildfires, given an
ignition (Figures 10 and 11).

4.2. Climate Change Impacts on California Ecosystems

Several conceptual frameworks exist that seek to determine the biophysical controls
on wildfire ignition and probability of spread. For example, wildfire has been shown to
thrive in the middle of a continuum between aridity (dry) and productivity (wet) [36].
Similar to the way that plants have evolved traits that reflect biotic tradeoffs in favor of
various survival strategies, wildfire regime is commonly controlled by the abundance and
moisture content of fuels [37–39]. For example, the tropics experience large amounts of
rainfall, have high biomass production, and contain the necessary fuels for large wildfires—
however, they are rarely dry enough to burn [38,39]. On the other hand, where moisture is
limited and biomass production is low, wildfire does not have the necessary fuel to spread.
Therefore, wildfire would be most likely to occur and spread in ecosystems that are dry for
sufficient periods of time so that vegetation becomes water-stressed, but wet enough to
support enough biomass that provide continuous fuels such that large wildfires may burn.
These environmental gradients impact all aspects of fire regime, including fire frequency,
occurrence, intensity, severity, and total area burned [8,38,39]. This phenomenon implies
that the projected impacts of climate change on temperature and atmospheric aridity
will have a more significant effect on northern California forested ecoregions sensitive
to extended dry periods than on the more consistently hot and dry southern California
regions that are adapted to such conditions, and are more likely to lack the necessary
abundance and continuity of fuel for large wildfires [9]. These climate-fire relationships are
critical for the interpretation of our results, as the most substantial changes to the amount
of area experiencing extreme fire weather (Figures 8 and 9), as well as the time added to
the onset and end of the fire season (Figures 10 and 11), are projected to occur in forested
northern California, where they could have the most dire implications for annual area
burned throughout the 21st century.
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In southern California, a large variety of topographies, vegetation types, climate
regimes, and human populations contribute to a fire regime dominated by frequent wild-
fires. The precipitation season is confined to a few core months (Dec.–Mar.) with some rain
occurring in the shoulder season of November and April, which in combination with the
warm and dry summers, leads to an extended annual fire season [32]. In addition, annual
Santa Ana winds advected from the eastern deserts towards the coast, move downslope at
high speeds and increase the risk of severe wildfire during the fall season. Vegetation types
are predominately herbaceous plants (chaparral), grasslands, shrubs, and patches of forest
that recover relatively quickly following wildfire. The rapid regeneration of herbaceous
fuels after wildfire are a factor in the frequent fire return interval throughout southern
California (1–5 years) [40]. Studies show that the impacts of climate change on fire regime
in southern California thus far are primarily a result of increasing temperatures and at-
mospheric aridity, as well as changing patterns of precipitation, that in turn influence the
state of the environmental constraints on wildfire activity discussed above [41]. Compared
to forested regions of northern California, fire regime in non-forested regions of southern
California are less susceptible to shifts in moisture availability and more so to availability of
fuel, however, these chaparral and grassland ecosystems are sensitive to rainfall patterns in
the year or two prior to fire occurrence because the influx of moisture promotes the growth
of vegetation [1,42]. Our results indicate that while the increases in land area experiencing
extreme fire weather are smaller than in northern California, and the extension of the
fire season is not as substantial, changes to southern California JJA and SON extreme fire
weather, in succession, still have the potential to tax vegetation and fire-fighting resources.

Conceptual frameworks help to attribute controlling factors to different fire regimes,
given the complex web of climate, human activity, topography, vegetation, hydrology, prior
wildfire, fire suppression, and fire management, with their practically infinite combination.
Our ecoregion specific results show a future consisting of more persistent extreme fire
weather that occurs in a greater land surface area than in the past. Therefore, with the
aid of climate-fire frameworks, we may deduce the range of impacts that this increase in
aridity and fire potential may have on sensitive ecosystems. While northern and southern
California ecoregion’s fire regimes are controlled by different factors, the simultaneous
increasing trends in atmospheric aridity and fire potential indicate a future in which fire
suppression and management resources throughout the state are stretched thin. In order
to offset the dangers of extended fire seasons throughout much of California by 2100,
alongside the expansion of the wildland urban interface, fire management must implement
innovative combinations of new and existing strategies intended to limit the destruction of
property and loss of life.

4.3. Limitations

Impact studies that utilize global climate model output generally require the use of
many models, however, due to the recent release of CMIP6, limited availability of the
fire weather variables required to perform the FWI and VPD calculations restricted our
ability to increase the number of models used [43]. Despite this, the evaluation of the
ensemble-mean of the three models chosen for this study showed good agreement with
observational data. In addition, we acknowledge that all statistical downscaling methods
are subject to issues of stationarity. To be clear, there are assumptions made regarding the
application of historical climatic patterns to projected data, however, the thin plate spline
and linear regression method employed here advantageously utilizes data surrounding
each grid point in the calculation of its smoothed estimate. This interpolation technique
works best with continuous data but it may be adapted to perform well with discontinuous
climate variables such as precipitation, and to some extent wind speed. Additionally, it is
important to consider the climate-wildfire-vegetation feedback when attempting to predict
annual area burned, however, this work focuses on the impacts of climate on extreme fire
weather, so the complex relationships among annual area burned, climate patterns, and
vegetation distribution are outside the scope of this study [44]. Lastly, it should be noted
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that projected increases in California’s summer and fall VPD and FWI are not synonymous
with a corresponding increase in annual area burned, as wildfire is inherently dependent
on an ignition source and flammable vegetation [4].

5. Conclusions

We analyzed the impacts of climate change on extreme fire weather in ten different
California ecoregions throughout historical, mid- and late-century periods using two
prominent fire weather indices. Climate model output from three CMIP6 models were bias
corrected and statistically downscaled using empirical quantile mapping in addition to a
simple thin plate spline interpolation method. Historical average baselines for each index
were calculated for each ecoregion and used to generate anomalies for 2041–2100. Relative
change analysis indicates that FWI and VPD are projected to increase in all ecoregions,
except the MWCM, which displayed a decrease in JJA and SON FWI in the mid- and
late-century periods. In addition, the average daily 95th percentile value for the historical
period (for each ecoregion) was implemented as a threshold in order to calculate the number
of summer and fall extreme fire weather days, and to evaluate the spatial distribution of
these changes. The frequency of 95th percentile days for JJA and SON VPD and FWI is
projected to increase significantly in all ecoregions, except the MWCM, which shows a
decline in FWI 95th percentile days. Furthermore, we analyzed the 30 year spatial average
of each index and generated frequency distributions to investigate the average change in
land area projected to experience extreme fire weather, relative to the historical benchmark.
We found that JJA VPD land area exceeding the 95th percentile will increase by a factor of 2
and 17 in different ecoregions by the end of 2100. Lastly, Julian-day climatologies of each
index were generated to assess the changing duration of a typical California fire season.
We found that the window of extreme fire weather will expand into the spring and late
autumn in all ecoregions (apart from the MWCM), extending the amount of time vegetation
is exposed to increased atmospheric demand for moisture, and heightening the overall risk
for the ignition and spread of large wildfire.

The ecoregion-level spatial scale adopted for this study increases the amount of local
information, as well as the resolution with which fire and land managers can implement
strategies and counter-measures when addressing issues related to climate change. The
spatial downscaling algorithm tested and implemented in this study was computationally
inexpensive (compared to dynamical downscaling) and may be readily applied to further
climate change scenarios in other Mediterranean and temperate regions [13,15]. High reso-
lution, daily meteorological data is not only useful for wildfire impact studies (and for inves-
tigating the post-fire environment), but can be implemented in the research of agricultural
productivity, urban heat islands, hydrology, and human health. This intuitive, practical,
and simple interpolation method will not only contribute to the improved understanding
of the complexities of California’s climate-fire dynamics, but will provide the means for
more efficiently obtaining climate model data of high spatial and temporal resolution.
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