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ABSTRACT 

Background. Wildfire simultaneity affects the availability and distribution of resources for fire 
management: multiple small fires require more resources to fight than one large fire does. Aims. 
The aim of this study was to project the effects of climate change on simultaneous large wildfires 
in the Western USA, regionalised by administrative divisions used for wildfire management. 
Methods. We modelled historical wildfire simultaneity as a function of selected fire indexes 
using generalised linear models trained on observed climate and fire data from 1984 to 2016. We 
then applied these models to regional climate model simulations of the 21st century from 
the NA-CORDEX data archive. Key results. The results project increases in the number of 
simultaneous 1000+ acre (4+ km2) fires in every part of the Western USA at multiple return 
periods. These increases are more pronounced at higher levels of simultaneity, especially in the 
Northern Rockies region, which shows dramatic increases in the recurrence of high return levels. 
Conclusions. In all regions, the models project a longer season of high simultaneity, with a 
slightly earlier start and notably later end. These changes would negatively impact the effective
ness of fire response. Implications. Because firefighting decisions about resource distribution, 
pre-positioning, and suppression strategies consider simultaneity as a factor, these results under
score the importance of potential changes in simultaneity for fire management decision-making.  

Keywords: climate change, climate change impact assessment, fire management, NA-CORDEX, 
regional climate modelling, simultaneous fire, statistical modelling, western USA, wildfire, 
wildland fire. 

Introduction 

Numbers of large wildland fires and area burned have risen in the last few decades in 
Western USA (USGCRP 2017; Iglesias et al. 2022). In addition, attribution studies have 
demonstrated that climate change is at least partially responsible for these observed 
increases (Abatzoglou and Williams 2016; Williams et al. 2019; Goss et al. 2020). 
Warming, altered large-scale circulations, and the associated increased aridity have 
also led to an increase in fire weather conditions (Zhuang et al. 2021), longer fire seasons 
(Westerling et al. 2016), drier fuels (Williams et al. 2019), and larger burned areas 
(Zhang et al. 2019). However, as observed in some locations, increased precipitation may 
act to counter these effects, producing wetter fuel, at least in some years in some 
locations, given the high spatial and temporal heterogeneity of precipitation in the 
Western USA (Zhang et al. 2021). These competing factors do not contribute to a 
straightforward projection of how climate change will influence wildfire. 

An additional factor that has received less attention in the fire-climate literature is 
potential changes in wildfire simultaneity. Simultaneous large wildfires or ‘megafires’ 
(fires with a final burned area of 1000 acres/4.05 km2 or more) pose a problem for 
wildfire management (Podschwit and Cullen 2020). All else being equal, it generally 
takes more resources to fight multiple fires than a single fire with the same total area 
(Podschwit and Cullen 2020; Abatzoglou et al. 2021). Per-hectare suppression costs 
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typically decrease with fire size, making fire perimeter a 
better estimator of cost than area (Smith and González- 
Cabán 1987), and multiple fires will have more perimeter 
than a single fire with the same area. In addition, the need to 
travel between incidents reduces the efficiency of resources 
(Bednar et al. 1990), and fighting multiple fires simulta
neously in one region requires the additional resources 
and coordination of Area Command (U.S. National Park 
Service 2017). Although crews and equipment can be 
deployed to serve multiple fires that do not co-occur, there 
are more variables to consider and more decisions to make 
in fighting multiple co-occurring fires (Podschwit and 
Cullen 2020; Cullen et al. 2021). 

It is likely that wildfire simultaneity is influenced by 
climate (Bowman et al. 2011), and there is evidence that 
synchronicity of wildfires in North America has increased 
over the observed record (Iglesias et al. 2022). For example,  
Podschwit and Cullen (2020) demonstrated that synchro
nous wildfires in the United States have increased during 
the observed period 1984–2015, related this to climatic 
indicators, and showed that simultaneous wildfires are cor
related with preparedness levels. Abatzoglou et al. (2021) 
demonstrated a correlation between days with high demand 
for national fire management resources and days with high 
synchronous fire danger, defined as days when the Canadian 
Fire Weather Index exceeds a high locally defined threshold 
over a large areal fraction of forested lands in the Western 
USA. They found significant trends in synchronous fire 
danger in both the observational record and in future projec
tions, based on 18 CMIP5 (Coupled Model Intercomparison 
Project Phase 5) climate simulations and the RCP 
(Representative Concentration Pathway) 4.5 and 8.5 scenar
ios. These results suggest that wildfire simultaneity is likely 
to increase as well, but because simultaneity was inferred 
based on the spatial extent of thresholded values across the 
region, they do not address questions of when and where it 
will do so in terms of the spatial and temporal scales relevant 
to stakeholder practitioners. We add to this work by evalu
ating multiple fire indexes as predictors of simultaneity and 
modelling simultaneity directly. 

Questions of significant interest remain, including how 
climate change will affect wildfire simultaneity over time 
and how those changes compare with the uncertainties 
associated with different representations of the future 
climate system. 

To begin to answer these questions, we project the effects 
of climate change on simultaneous large wildfire occurrence 
at the level of Geographic Area Coordination Centers 
(GACCs). GACCs are the geographic units used in many 
fire management decisions, making this spatial scale highly 
operationally relevant to stakeholders (Cullen et al. 2022). 
Similarly, we used a bi-weekly timestep in the analysis to 
accommodate both the timescale of decision-making and 
the uncertainty associated with reporting of fires. We also 
analyse changes in simultaneity in terms of return levels 

(threshold values expected to be reached or exceeded on 
average once per period) in order to use a framing that is 
operationally relevant. 

Materials and methods 

We modelled historical large wildfire simultaneity at the 
GACC level as a function of various fire indexes that can 
be calculated from climate variables using generalised linear 
models (GLMs). We tested a variety of different fire indexes 
and methods of aggregating them from daily grid cell values 
to bi-weekly GACC values; after selecting the best predictor 
for each GACC, we then applied the corresponding GLM to 
fire indexes calculated from RCM (Regional Climate Model) 
outputs. We trained the GLMs on observed climate and fire 
data from 1984 to 2016 using 11-fold cross-validation. 

Data 

We used the Monitoring Trends in Burn Severity (MTBS; MTBS 
Project 2021) dataset for counts and locations of large wild
fires, which we define as incidents coded as type ‘Wildfire’ and 
having a final area of 1000 acres (4.05 km2) or more. The 
MTBS dataset shows a sharp drop in fires below that size, 
which suggests it is the effective threshold of reliable report
ing. This is also roughly the lower bound on size for fires that 
result in noteworthy fire management activity as indicated by 
the generation of an Incident Management Situation Report (E. 
Belval 2022, pers. comm., 31 October). We investigated the 
effects of using a higher size threshold and found that although 
this would change return levels and the choice of best predic
tor, it does not affect the overall pattern of change. 

To calculate simultaneity, we counted the number of such 
fires in each GACC using non-overlapping 2-week windows. 
This both aligns with the timescale of decision-making in 
wildfire management and accounts for uncertainty associ
ated with the temporal extent of large wildfires, which often 
last for more than a day but for which only the date of 
ignition (which may itself be uncertain) is reported in the 
MTBS database (Podschwit and Cullen 2020). 

For observed climate data, we averaged gridMET data 
(Abatzoglou 2013) to 0.25° resolution, matching the resolu
tion of the climate model outputs. gridMET is a gridded 
observational data product that provides daily high- 
resolution meteorological data for the contiguous United 
States of multiple impacts-relevant variables, including daily 
temperature extremes, precipitation, humidity, and surface 
winds. From these data, we calculated seven fire indexes: 
(1) Canadian Fire Weather Index (CFWI; Van Wagner and 
Pickett 1985); (2) Keetch–Byram Drought Index (KBDI;  
Keetch and Byram 1968; Alexander 1990); (3) Modified 
Fosberg Fire Weather Index (mFFWI; Goodrick 2002); (4) 
100-h Fuel Moisture; (5) 1000-h Fuel Moisture; (6) Energy 
Release Component; and (7) Burning Index (FM100, FM1000, 
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ERC, and BI, respectively; Cohen and Deeming 1985). For 
ERC and BI, we calculated two versions using different fuel 
models: one (ERC-G) using fuel model G, which is commonly 
used as the default; and one (ERC-L) using the fuel type 
covering the largest fraction of the grid cell using data from 
the NFDRS Fuel Model Map (Burgan et al. 1998). We devel
oped a library of NCAR Command Language (Brown et al. 
2012) functions to calculate the fire indexes (Kessenich and 
McGinnis 2022). The input variables used to calculate each 
fire index are presented in Supplementary Table S1. 

Regional climate models (RCMs) are dynamical (physics- 
based) models run at high resolution over a limited area 
using boundary conditions from coarser global climate 
model (GCM) simulations as drivers. The regional climate 
RCM data we used comes from the NA-CORDEX archive 
(Mearns et al. 2017). We used all simulations driven by 
CMIP5 GCMs under the RCP8.5 emissions trajectory that 
had all the variables needed to calculate the fire indexes 
in Supplementary Table S1. Although RCP8.5 is a high-end 
scenario in the absence of additional targeted climate policy 
(i.e. with no reductions in emissions), it is a useful scenario 
for assessing impacts of climate change, especially in the 
near- and mid-term (Schwalm et al. 2020a, 2020b; Steel 
et al. 2022). Moreover, from the point of view of risk 
assessment, this is a high-risk scenario and thus important 
to consider in any risk assessment (Riahi et al. 2022). It is 
therefore also a useful scenario from the point of view of 
considering future adaptation possibilities, since if one can 
adapt to a high-end scenario, it is likely that one can 
adapt to lower scenarios. (Hallegatte 2009). There were 
13 simulations total, 10 at 25-km resolution and three at 
50-km resolution, comprising various combinations of 
six RCMs and five GCMs, as detailed in Supplementary 
Table S2. The GCMs span 85% of the range of equilibrium 
climate sensitivities (ECS) seen in the full CMIP5 ensemble 
(Bukovsky and Mearns 2020), covering a range of 2.4–4.6°C 
versus the full range of 2.1–4.7°C, with a mean and 90% 
confidence interval of 3.5 ± 1.1°C versus 3.2 ± 1.3°C for 
the full ensemble (Flato et al. 2013). The results of these 
simulations are representative of the mid- to upper range of 
plausible futures and have overlap with RCP4.5 results at 
mid-century (IPCC 2013a, 2013b; Rendfrey et al. 2018). 
Although NA-CORDEX simulations exist for other RCPs, 
we do not consider them here because the ensembles are 
considerably smaller, comprising seven simulations from 
four RCMs and four GCMs that span only 15% of the full 
CMIP5 ECS range (3.3–3.7°C, with a mean and 90% confi
dence interval of 3.5 ± 0.3°C) and therefore do not encom
pass the same level of structural (i.e. combined model) 
uncertainty. For each simulation, we used data that had 
been regridded to a common 0.25° (or 0.50°, as appropriate) 
latitude–longitude grid, and bias-corrected using Cannon’s 
multivariate MBCn algorithm (Cannon 2018) against 
gridMET observations, to compute the fire indexes in 
Supplementary Table S1. 

Statistical modelling 

We fit hurdle GLMs to predict the number of simultaneous 
large wildfires per GACC as a function of fire index. The 
hurdle model has two components: one GLM that predicts 
the probability of zero counts; and another that predicts non- 
zero count values. Using separate components for occurrence 
and level of simultaneity handles the highly-zero-inflated 
nature of the data. We used a GLM with binomial response 
and a logit-link function for the occurrence model, and a GLM 
with negative binomial response and log-link function for the 
count model of simultaneity level. A negative binomial mod
els the heavy tail of distribution better than a Poisson distri
bution. We used the hurdle model from the R (R Core Team 
2021) package ‘pcsl’ (Zeileis et al. 2008; Jackman et al. 2020) 
and fit parameters using maximum likelihood estimation. 

Because simultaneity data is bi-weekly at the GACC level, 
we needed to aggregate the daily 25-km fire index data to 
match. We first averaged the fire index data spatially over 
each GACC, then aggregated it in time over 2-week windows 
using a range of five different possible statistics: the mini
mum, maximum, average, and 20th and 80th percentiles. In 
early stages of this research, we tested other methods of 
spatial aggregation based on exceedance of a threshold 
associated with observed fires in the historical record, but 
later abandoned them because they did not perform well 
compared with the spatial average. 

For each GACC, we fit 90 GLMs in total, one for every 
combination of the nine fire indexes (including the two 
variants of ERC and BI), five temporal aggregation methods, 
and two grid scales. We then selected the predictor for each 
GACC with the best AIC (Akaike Information Criterion) 
weight. In every case, the best predictor at 0.25° resolution 
matched the best predictor at 0.5° resolution. We fit the 
models on 33 years of data from 1984 to 2016 using 11-fold 
cross-validation, for 30 years of training data and 3 years of 
holdout data in each fold. We also evaluated the GLMs’ ability 
to predict non-zero levels of simultaneity using the area under 
the Precision-Recall curve (PRC), which is a better measure of 
performance than the Receiver–Operator Curve when the clas
ses are imbalanced (Saito and Rehmsmeier 2015). 

For every GACC except Northern California (NC), the fit 
for the selected GLM was good, with p-values less than 0.01, 
high PRC values, and cross-validation RMSEs comparable to 
the values expected for comparing the distributional mean 
to a single sample. GLM validation plots can be found in 
Supplementary Figs S1–S7. In Northern California, the GLM 
had good performance predicting non-zero simultaneity, but 
had difficulty predicting higher levels of simultaneity. This 
may be because the NC GACC has the smallest area, which, 
all else being equal, reduces both the total number of fires 
and the level of simultaneity, and therefore reduces the 
effective sample size for fitting a statistical model. 

With two exceptions, the best predictor of simultaneity in 
every GACC was 2-week average CFWI. In the Northwest 
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(NW) GACC, it was narrowly beaten by 2-week 80th- 
percentile CFWI, and in the Southwest (SW) GACC, the 
best predictor was instead 2-week average FM100. The 
Canadian Fire Weather Index rates the potential frontal 
fire intensity modelled for a mature pine stand, where 
higher CFWI values indicate higher fire intensity. It com
bines elements from the Canadian Forest Fire Danger Rating 
System, including fuel moisture codes, initial spread com
ponent, and buildup index (De Groot 1987). Fire intensity is 
related to flame length and difficulty of fire suppression 
(Alexander and De Groot 1988). 

We tested the effect of using different-size thresholds for 
the definition of large wildfire, considering 1000-, 2000-, 
5000-, and 10 000-acre (4.05, 8.1, 20.25, and 40.5 km2) cut
offs, and found that our conclusions were qualitatively 
unchanged by this choice. Although simultaneity levels 
decrease because fewer fires are included, the patterns of 
change remain the same. The choice of best predictor is 
generally insensitive to the size threshold below a fairly 
high level: at the 5000-acre (20.25 km2) threshold, the best 
predictor for the SW GACC changes from FM100 to ERC-G, 
and at 10 000 acres (40.5 km2), the NW GACC switches from 
CFWI to FM100 and the RM and SC GACCs change to 
FM1000. However, in all cases, although the new best predic
tors have a higher AIC value, the performance of the best 
predictors for lower thresholds remains near-optimal and is 
very close to that of the new best options. The performance 
metrics (RMSE and PRC) we used for evaluation are nega
tively affected by using a lower threshold, but that is to be 
expected because the number of fires that are counted is 
reduced, so both the magnitude and frequency of non-zero 
simultaneity are also reduced. This effect is shown in Fig. 1. 
Because the results are qualitatively unchanged by the choice 
of threshold, we have chosen to focus on the 1000-acre 
(4.05 km2) threshold for this analysis because it aligns well 
with the scale of decision-making. 

Analysis 

To project future large wildfire simultaneity under climate 
change, we applied the best-performing GLM in each GACC 
to the corresponding fire index predictors calculated from 
the 13 NA-CORDEX simulations. This produced a 150-year 
bi-weekly sequence of probabilities for different simultane
ity levels, from which we calculated the average probability 
of reaching or exceeding a given level of simultaneity in a 
period. 

We used 1-, 2-, 5-, and 10-year return levels for these 
thresholds because those values are operationally relevant 
for fire management. Marsha (2012) describes different 
Preparedness Levels (PLs) used for fire management in the 
Northwest (NW) GACC as corresponding to conditions of 
large fire simultaneity, such that ‘a PL 5 could be expected 
to occur on the average of about once every 5 years while a 
PL 4 might be expected to occur every other year. PL 3 would 

essentially occur every year,’ (p. 2). Current procedures for 
determining PL are based less on absolute number of fires 
and more on anticipated degree of resource utilisation 
(NWCC 2020), but viewing changes in wildfire simultaneity 
through the lens of these return levels brings this research 
into alignment with the stakeholder frame of reference. 

We used a 10 000-sample bootstrap to estimate the order 
statistics corresponding to 1-, 2-, 5-, and 10-year return 
levels of observed GACC-level simultaneity in the MTBS 
dataset. Note that because simultaneity values are integers, 
these thresholds are as well, whereas the expected average 
number of threshold exceedances per period projected by 
the GLMs is non-integer, and can differ from the return level 
even when applied to historical data. 

Results 

To evaluate changes in large wildfire simultaneity due to 
climate change, we calculated the expectation value of the 
number of bi-weekly periods where the number of simulta
neous large wildfires in a GACC exceeded various return 
levels, as projected by GLMs (generalised linear models), 
which were fit to observational data and applied to output 
from an ensemble of 13 regional climate models (RCMs) 
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Fig. 1. Performance of GLMs (circles) predicting simultaneity 
compared with statistics of observed simultaneity (crosses) for 
different fire-size thresholds. The GLMs have good accuracy in pre
dicting the presence/absence of fire as measured by the area under 
the precision-recall curve (y-axis). They also have low cross-validation 
RMSE (x-axis) relative to the variance of observed non-zero simulta
neity. Using a smaller fire-size threshold results in more frequent 
observed non-zero simultaneity (y-axis) and higher variance (x-axis), 
because the number of fires considered increases, which in turn 
reduces performance metrics.   
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using the RCP8.5 future emissions scenario (Mearns et al. 
2017; Bukovsky and Mearns 2020). We then averaged these 
values over 30-year moving windows, distilling the projec
tions down to a single value per RCM, window, and return 
level, and normalised them to the total number per return 
period (i.e. the number of events above the 2-year return 
level per 2 years, events above the 5-year threshold per 
5 years, etc.). Fig. 2 summarises these results. 

Fig. 2 shows a general pattern of increase in simultaneity 
in all GACCS and at all return levels. The spread across the 

ensemble of RCMs also increases with time. Some individual 
models show decreases (as indicated by the lower whiskers), 
and increases are not always monotonic, but the median of 
the projections trends upwards throughout the 21st century 
in every GACC and at every return level. Note that the 
models tend to underestimate historical simultaneity levels; 
this could reflect weaknesses in the statistical models, the 
RCMs, and/or the bias-correction of the RCMs, but the trend 
over time is much larger than this error. Although the return 
levels have been normalised to the same baseline, the 
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Fig. 2.  (a) Map of the Western USA GACCs. (b) Associated 1-, 2-, 5-, and 10-year return levels of bi-weekly 
simultaneity estimated from the historical record (1984–2016). (c–f) Boxplots of the projected number of returns 
per return period for different 30-year windows (mid-point given on X-axis), colour-coded by GACC. Each box 
represents model-average results from an ensemble of 13 RCMs. Boxes span the interquartile range, with a bar 
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which are points more than 1.5 × the IQR beyond the 75th percentile. Note the different y-axis scales on panels 
(c, d) vs (e, f).    
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recurrences of higher return levels show comparatively 
larger increases; there are very few projections that show 
a doubling of the number of 1-year return level exceedances, 
and more than half the models in more than half the GACCs 
project at least a doubling in the frequency of the 10-year 
return level. 

The Northern Rockies GACC shows the most dramatic 
increases, especially at high return levels, where by end of 
century the historical 10-year return level of more than 35 
simultaneous large wildfires is occurring almost five times 
per decade for a majority of projections. The Great Basin, 
Rocky Mountain, and Northwest GACCs also show substan
tial increases in recurrence across all return levels. The 

high-level increases in the Southwest, Southern California, 
and Northern California GACCs are more modest, and to 
some extent are obscured by the comparatively larger 
increases in the other GACCs. In the Northern California 
GACC in particular, the GLM had difficulty predicting high 
levels of simultaneity, so in this case the results may be more 
indicative of a lack of statistical power in the observations than 
of the effect of climate change. The upward trends in predicted 
simultaneity reflect corresponding trends in the GLM predic
tors for each GACC (see Methods section for details). 

Fig. 3 shows changes in the seasonal timing of simultane
ity; in general, the future patterns resemble amplified 
versions of the historical patterns. In all GACCs, most or 
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Fig. 3. (a) Map of Western USA GACCs. (b–h) Boxplots of the seasonal variation in projected simultaneity on 
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pattern, but with lower overall probabilities and correspondingly more noise.    
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all of the models project a shift toward a longer season of 
potential high simultaneity, with a slightly earlier start and a 
notably later end. This is clear in the Northwest (e) and 
Northern Rockies (h) GACCs, and especially noticeable in 
the Rocky Mountain (g) GACC, where most models show a 
period of high simultaneity above the historical peak extend
ing from late June through early September. The median 
probability of exceeding the 1-year return level is roughly 
doubled in this period for these regions, and some individual 
models project increases up to four times higher. In the 
Southwest GACC (b), a few models show the emergence of a 
secondary season of high simultaneity in the fall with proba
bilities around a third of the historical peak. In the Rocky 
Mountain (g) and Northern Rockies (h) GACCs, the median of 
the ensemble reaches its maximum 2–4 weeks later in the 
future period, indicating that most models show a shift in 
the peak of simultaneity in these regions. Individual model 
results are visualised in Supplementary Figs S8 and S9. 

Discussion 

Based on our statistical modelling, the NA-CORDEX ensem
ble of RCM simulations projects increases in the number of 
simultaneous 1000+ acre (4+ km2) wildfires in every part 
of the Western USA. These increases are more pronounced at 
higher levels of simultaneity, which means that not only do 
‘bad years’ happen more frequently, the more extreme they 
are, the worse they get. The length of the season of high 
simultaneity also increases everywhere and extends later 
into the year, most notably in the northern and eastern 
parts of the region, and especially in the Rocky Mountain 
GACC. Late-fall simultaneity may increase in the Southwest 
GACC. These results align with the projections made by  
Abatzoglou, et al. (2021), while adding regional detail and 
information about seasonality and interannual variability. 

Anticipated increases in the level of simultaneous fire can 
serve as a proxy for increased demand for fire response 
(Podschwit and Cullen 2020). National preparedness levels 
in the USA, which dictate and influence both requests for fire- 
response resource sharing and also the likelihood these 
requests will be filled (National Interagency Fire Center 
2020), are correlated with the number of simultaneous fires 
actively burning, and positive trends in the number of simul
taneous fires have been detected in recent years in some 
regions of the western United States (Podschwit and Cullen 
2020). In 2021, a record number of days were spent at 
national PL 5 and a record number of days were spent at 
national PL 4 and 5 combined (National Interagency 
Coordination Center 2022). Additionally in 2021, the national 
preparedness level was elevated to PL 5 at the earliest point 
in the year in the past 10 years, on July 14, due in 
part to significant shared resources being committed to 
multiple geographic areas experiencing large simultaneous 
fire incidents (USDA Forest Service 2021). With greater 

numbers of simultaneous fires projected in the future, the 
decision context can expect to become more overwhelmed. 
Responses to this evolution could range from substantially 
elevating the pace and scale of fuel treatment to intentional 
changes in policies around hiring and budgeting for fire 
response. Because simultaneity serves as a proxy variable for 
resource strain, the ability to share resources will likely decrease 
with increased simultaneity if the amount of available resources 
and staff are not increased to meet management needs. 

Wildfires are a necessary piece of the landscape in the 
western USA, and historically, forest ecosystems were adapted 
to low-intensity burning. A combination of natural ignitions 
and Indigenous burning practices created a patchwork variety 
of fuel types and fire conditions, which helped slow the 
growth and lessen the intensity of burning. However, decades 
of fire suppression have led to a buildup of fuels in large 
uninterrupted areas, shifting the fire landscape towards 
larger, more severe fires (Prichard et al. 2021). This analysis 
implicitly assumes that current fuel conditions will persist and 
continue to provide conditions conducive to large fires. 
However, mitigation and management of fuel availability 
would reduce the propensity for large fires, which would in 
turn reduce simultaneity of those fires. 

This analysis also assumes no climate mitigation actions 
are taken to reduce total atmospheric CO2 concentrations in 
its use of RCP8.5. Although RCP8.5 is useful for assessing 
risk through at least mid-century, climate mitigation policy 
(Schwalm et al. 2020a, 2020b; Steel et al. 2022) – or use of a 
different scenario in our analysis – would likely reduce the 
severity of these end-of-century projections. However, this 
reduction is likely to be comparatively small. Abatzoglou 
et al. (2021) explored both RCP8.5 and RCP4.5, using a 
different approach to simultaneity and a statistical rather 
than dynamical approach to downscaling the CMIP5 data, 
and found that although RCP4.5 did show a lesser increase 
in synchronicity, the results were not greatly different from 
those of the RCP8.5 scenario, especially for the mid-century 
period. Their results show that using RCP4.5 reduces the 
amount of change by around 15% in mid-century and 
around 25% later in the century, whereas the spread due 
to choice of GCM is typically around 130% of the amount of 
change. This is in line with Collins et al. (2013), who 
showed that the difference in overall warming associated 
with these scenarios is still comparatively small in 2050, and 
is considerably less than the uncertainty associated with 
choice of GCM. The uncertainty across GCM–RCM combina
tions is thus more important for practitioners to consider 
than the uncertainty across concentration scenarios, partic
ularly for the mid-century. 

Evaluation of changes in simultaneity among regions is 
beyond the scope of this paper, but would be of considerable 
interest to the stakeholder practitioner community. Resource- 
sharing between GACCs is an important element of fire man
agement that depends critically on differences in the level of 
need among regions; resources aren’t available to be shared 
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between two GACCs if both are facing a peak in fire activity at 
the same time (Podschwit and Cullen 2020). 

The Northern California GACC presents a challenge for 
statistical modelling, which may be due to its size. It would 
likely improve the statistical power of the observational 
record to subsume this GACC into other, larger GACCs for 
the purposes of analysis, but how to do so in a manner that 
balances matching the region of analysis to the physical 
system with performing analysis using a framework that is 
useful to stakeholders is a prime candidate for the collabo
rative coproduction of knowledge by scientists and practi
tioners. This issue could also reflect a weakness of the GLM; 
this GACC has the heaviest distributional tail, as reflected by 
the steep increase in return levels at longer return periods, 
and the statistical model may need further refinements to 
better handle poorly-sampled extremes. 

The NA-CORDEX ensemble exhibits considerable spread 
in the projections, and some models project surprisingly 
extreme increases. For example, in the Northern Rockies 
GACC, the most extreme simulation projects that simultane
ity at the historical 10-year return level will occur more than 
once per year by the last third of the century. Further 
analysis would be warranted to determine the credibility 
of such an extreme. Because fire indexes combine many 
different simulation outputs, often in a cumulative fashion, 
they may prove to be sensitive detectors of salient differ
ences in RCM behaviour in these regions. Evaluation of the 
variability of individual RCM projections across different 
GACCs could provide insight into differences in the patterns 
of climate change projected by different models. 

Although this analysis does not include all possible com
binations of model and scenario, the results are representa
tive of the middle to upper range of plausible responses, and 
are appropriate for use in risk-averse planning. Note that 
there are lower-bound scenarios associated with lower con
centration pathways and models with lower ECS that are 
likely to result in futures that are closer to historical condi
tions. Because the lowest responses resulting from the simu
lations included in this analysis are at or below historical 
levels, it is entirely plausible and even likely that lower end 
of these scenarios overlaps with the upper end of the lower- 
bound scenarios. This viewpoint is agnostic with respect to 
the relative probabilities of different models and scenarios, 
and in line with the concept of ‘model democracy’ used in 
CMIP5. In addition, GCMs selected for downscaling in the 
CORDEX program were typically those that exhibited good 
performance in reproducing historical observations of sur
face temperature and precipitation. Thus, these simulations 
tend to be weighted heavily in approaches that use ensemble 
weighting schemes to reduce uncertainty. We are therefore 
confident that these simulations represent a range of out
comes that are not just possible but plausible. Finally, note 
that for many of the variables used as inputs to fire indexes, 
model skill is harder to verify than it is for temperature, 
making it important to consider a wide variety of models. In 

the context of long-term decision-making and finite compu
tational resources, we posit that the deeper structural (com
bined model) uncertainty considered in this analysis is of 
greater concern than the uncertainty associated with a lower 
change scenario that generally resembles a reduced version 
of a higher-end scenario. 

All that being said, we can make some determinations 
regarding the credibility of the NA-CORDEX simulations. In 
general, it has been well documented that simulations with 
regional climate models add value to the reproduction of 
current climate and projections of future climate (Giorgi 
et al. 2016; Doblas-Reyes et al. 2021) compared with their 
driving GCMs. Regarding this dataset specifically, various 
evaluations have been conducted that reflect improvements 
in the simulation of current climate and likely greater credi
bility of future climates (Gibson et al. 2019; Prein et al. 2019;  
Xu et al. 2019; Gutiérrez et al. 2021). It should also be noted 
that much of the work about the effect of future climate on 
fire weather has been performed using statistical downscal
ing (Abatzoglou and Brown 2012; Stavros et al. 2014; Parks 
et al. 2016). However, some serious limitations of statistical 
downscaling have been documented (Dixon et al. 2016;  
Kotamarthi et al. 2021), such that depending on the specific 
approach used, statistical downscaling results under condi
tions of climatic change may be suspect, particularly in areas 
of complex terrain such as the mountainous west. Although 
spatial averaging to the GACC scale eliminates the greater 
detail provided by dynamical downscaling, RCMs are better 
at reproducing local and regional scale weather and circula
tion that is important in determining characteristics of the 
fire weather indexes, which are calculated before the aver
aging takes place; although the influence of higher resolution 
is reduced by averaging, it is not eliminated. Therefore, there 
are some general advantages and added value in the 
NA-CORDEX dataset. A more thorough analysis of the data
set from the point of view of added value would be desirable. 

Supplementary material 

Supplementary material is available online. 
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