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Heading and backing fire behaviours mediate the influence of 
fuels on wildfire energy 
Joseph D. BirchA,B,* , Matthew B. DickinsonC , Alicia ReinerD , Eric E. KnappE , Scott N. DaileyF,  
Carol EwellG, James A. LutzH and Jessica R. MieselA,B

ABSTRACT 

Background. Pre-fire fuels, topography, and weather influence wildfire behaviour and fire- 
driven ecosystem carbon loss. However, the pre-fire characteristics that contribute to fire 
behaviour and effects are often understudied for wildfires because measurements are difficult 
to obtain. Aims. This study aimed to investigate the relative contribution of pre-fire conditions 
to fire energy and the role of fire advancement direction in fuel consumption. Methods. Over 
15 years, we measured vegetation and fuels in California mixed-conifer forests within days before 
and after wildfires, with co-located measurements of active fire behaviour. Key results. Pre-fire 
litter and duff fuels were the most important factors in explaining fire energy and contributed 
similarly across severity categories. Consumption was greatest for the forest floor (litter and duff; 
56.8 Mg ha−1) and 1000-h fuels (36.0 Mg ha−1). Heading fires consumed 13.2 Mg ha−1 more litter 
(232%) and 24.3 Mg ha−1 more duff (202%) than backing fires. Remotely sensed fire severity was 
weakly correlated (R2 = 0.14) with fuel consumption. Conclusions. 1000-h fuels, litter, and duff 
were primary drivers of fire energy, and heading fires consumed more fuel than backing fires. 
Implications. Knowledge of how consumption and fire energy differ among contrasting types of 
fire behaviours may inform wildfire management and fuels treatments.  

Keywords: backing fire, burn severity, carbon loss, FBAT, fire effects, flanking fire, forest 
change, heading fire, Klamath Mountains, Sierra Nevada. 

Introduction 

Wildfire impacts are often assessed over extended post-fire timescales and by using 
remote sensing techniques that characterise near-term (i.e. ~1 year) to delayed fire 
effects over landscape scales. However, these approaches may not adequately capture 
immediate fire effects such as fuel consumption, carbon emissions, and the release of 
damaging or lethal fire energy into surrounding vegetation, or the fire behaviours that 
produce those effects (Johnson 1996; Dickinson 2002; De Groot et al. 2009). Measuring 
the drivers of fire behaviour and immediate fire effects is important for improving 
knowledge about how fire behaviour influences the post-fire environment and long- 
term forest recovery. Understanding these relationships depends on accurate measures 
of immediate fire effects and their drivers, because relatively small absolute differences 
in fire behaviour and fuel consumption may produce outsized ecosystem effects. For 
example, the consumption of overstorey foliage, despite it being a relatively small 
proportion of overall forest biomass (Miesel et al. 2018), may result in tree mortality, 
loss of carbon sequestration potential, and eventual increases in downed woody fuels 
(Furniss et al. 2020b; Jeronimo et al. 2020; Lutz et al. 2020). In contrast, equivalent 
consumption of litter or duff mass may have lesser direct impacts on overstorey trees but 
result in high carbon loss and smoke emissions (McRae et al. 2006; De Groot et al. 2009; 
but see Cansler et al. (2019)). 

Understanding relationships among forest fuels, fire behaviour, and effects in differing 
fuel strata (e.g. canopy or ground fuels) is important for refining our knowledge of how 
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these specific wildfire characteristics influence post-fire eco
system responses (sensu Keeley et al. 2009). Relatively 
recent advancements in applications of remote sensing 
data over the past decade(s) have expanded our ability to 
characterise post-fire landscapes, but these techniques rely 
most directly on detected changes in overstorey vegetation 
reflectance that occur within the first post-fire year (van 
Wagtendonk et al. 2004; Miller and Thode 2007). These 
increasingly standard measures of remotely sensed fire 
severity may not relate directly to immediate fire effects 
because delayed tree mortality and additional factors such 
as insect infestation or drought may also occur during and 
after the first post-fire year and contribute to longer-term 
ecosystem responses (van Mantgem et al. 2018; Lutz et al. 
2020). Given the widespread application of remote sensing 
data and derived burn severity metrics in post-wildfire man
agement (Eidenshink et al. 2007), evaluating their ability to 
represent direct fire effects such as fuel consumption will be 
important for strengthening linkages between immediate 
and longer-term fire effects. 

Fire effects are inherently driven by fire behaviour, which 
varies as a function of fuel, topography, and fire weather. 
Interactions among these factors cause wildfires to transi
tion from smouldering to more energetic flaming phases 
(Rein 2016), leading fires to advance rapidly through sur
face fuels such as shrubs, herbaceous plants, or fine litter 
and woody fuels. The amount of fuel consumed and its heat 
of combustion together determine fire energy (Van Wagner 
1972; Johnson 1996). Fire energy, an estimate of the 
amount of total heat released by fuel consumption and 
modified by fuel moisture, may be more directly related to 
fire effects than measures of fuel consumption alone. 
Differences in fire energy and behaviour may cause variable 
fire effects with long-term consequences for forest health and 
fuel loadings. For example, heading fires (fire advancement 
with the wind or slope) may exhibit faster rates of pre- 
conditioning or drying of nearby fuels, faster rates of spread, 
and greater fireline intensities than backing fires (Rothermel 
1972). Although the interactions between fire spread, topog
raphy and fuel consumption have been relatively well-studied 
for prescribed fires (Fahnestock and Hare 1964; Knapp et al. 
2011; Skowronski et al. 2020), scientific understanding of 
how these factors influence fire energy during wildfires burn
ing under more extreme conditions remains largely lacking. A 
better understanding of relationships among pre-fire fuel load
ings, environmental conditions, and fire behaviour may help 
support tactical decision-making on wildfires, particularly 
relative to ignition and holding operations that are intended 
to reduce fireline intensities and fire effects on vegetation 
(Ingalsbee and Raja 2015; Fillmore et al. 2021). 

To address these knowledge gaps, we analysed a globally 
unique dataset of immediate pre- and post-fire forest composi
tion and structure and fuel measurements coupled with in situ 
fire behaviour measurements collected across 15 years on 
wildfires occurring in Sierra Nevada mixed-conifer forests 

(California, USA). Our primary objective was to define the 
immediate drivers and effects of contrasting wildfire beha
viour. Specifically, we evaluated the following questions:  

(1) What are the immediate effects of wildfire on forest fuel 
loadings, and how does the magnitude of change differ 
among forest fuel strata?  

(2) What are the drivers of wildfire energy and how do they 
differ with burn severity? 

(3) How do ground-based measurements of fuel consump
tion relate to satellite remote sensing burn severity?  

(4) How do fuel consumption and fire energy differ among 
contrasting directions of fire advancement (e.g. head
ing, backing, and flanking fires)? 

Methods 

Study area 

Sierra Nevada mixed-conifer forests represent a continuum of 
pine- (Pinus spp.) and fir- (Abies spp.) dominated forests 
whose distribution is jointly controlled by fire and climate 
(Parks et al. 2018; van Wagtendonk et al. 2020). Since the 
early 1900s, fire suppression and land use change have caused 
a shift in forest composition, structure, and biomass. These 
forests, which historically consisted of a higher proportion of 
Pinus species, have become denser and increasingly 
encroached by shade-tolerant species such as Abies concolor 
(Gordon & Glendinning) Hildebrand (white fir) (Parsons and 
DeBenedetti 1979; McIntyre et al. 2015; Hagmann et al. 
2021). Similar to forests across western North America, these 
forests are experiencing pronounced periodic drought (Young 
et al. 2020), a longer fire season (Westerling et al. 2006), and 
greater forest mortality rates (van Mantgem et al. 2009) rela
tive to their pre-Euro-American settlement conditions. 

Our study consisted of 112 plots established across 18 
wildfires that occurred in mixed-conifer forests between 
2005 and 2020, spanning an elevation range of 419–2656 m 
(Fig. 1). All data were collected by the USDA Forest Service 
Fire Behaviour Assessment Team (FBAT) (Table 1). The FBAT 
collects pre-fire, during-fire, and post-fire data to predict and 
quantify fire behaviour and understand short- and long-term 
fire effects. The plots occur predominantly within US National 
Forests (n = 106); an additional six plots were located inside 
Yosemite National Park, including four in the Yosemite Forest 
Dynamics Plot (YFDP) (Lutz et al. 2012; Davies et al. 2021). 
All plots burned between 18 June and 20 October (June: 5% 
of plots; July 30%; August 25%; September 35%; October 3%) 
and usually during the daytime. 

The plots encompass a range of topography and forest 
compositions (Supplementary Appendix S1, Supplementary 
Table S1). Common tree species included Abies concolor 
(white fir), Calocedrus decurrens (Torrey) Florin (incense 
cedar), Pinus jeffreyi Greville and Balfour (Jeffrey pine), 
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Pinus lambertiana Douglas (sugar pine), Pinus ponderosa 
Douglas ex Lawson and C. Lawson (ponderosa pine), 
Pseudotsuga menziesii var. menziesii (Mirbel) Franco 
(Douglas-fir), and Quercus kelloggii Newberry (California 
black oak) (Flora of North America Editorial Committee e. 
1993+). Prior to establishment, many encompassing areas 
had been treated by land managers to address specific 
management objectives. We did not analyse pre-fire treat
ment history because any remaining treatment outcomes 
(e.g. lower fuel loadings or altered forest structure) were 
inherently reflected in our pre-fire fuel and vegetation struc
ture, composition, and fuel measurements. 

Plot establishment 

The FBAT field methods were chosen to balance data collec
tion with speed, which is particularly important for pre- 

wildfire measurements when opportunities for data collec
tion may be fleeting. Detailed protocols are available online 
(https://www.frames.gov/fbat/home). Plots were estab
lished between 1 and 3 days prior to wildfire reaching the 
location and were re-measured within 10 days post-burn. Plot 
locations were opportunistically selected to provide represent
ative conditions of the local landscape while also being 
located within several hundred metres (µdistance = 244 m) of 
the nearest road; this helped maximise the number of plots 
established and provided for escape routes should they be 
needed. Each plot was monumented with rebar at plot centre 
and at the end of each fuel transect to aid post-fire remeasure
ment. In each plot, we placed a fire-protected camera 
mounted on a tripod at 1.2 m above ground level, which 
was oriented to maximise the likelihood that the fire would 
spread across the plot perpendicular to the camera. Camera 
systems were designed with heat-sensitive trip wires that 

Elevation

4400 metres

–150 metres
N

0 100 km

Fig. 1. The location of the 112 (circles) 
plots established by the Fire Behaviour 
Assessment Team from 2005 to 2020 
in California, USA. Plot locations are 
marked with shaded circles. Elevation 
sourced from 1 × 1-degree 1/3 arc- 
second digital elevation models ( United 
States Geological Survey 2020).   
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Table 1. Wildfire descriptions.          

Name Ecoregion Start date Source Area burned (ha) Number of plots Elevation range (m) Dominant tree species   

Antelope Complex Sierra Nevada 5 July 2007 Lightning 9037 9 1696–1840 P. jeffreyi (0.92) – A. concolor (0.05) 

Aspen Sierra Nevada 22 July 2013 Lightning 9282 6 1543–1679 A. concolor (0.42) – P. ponderosa (0.34) 

Bake-Oven Klamath 23 July 2006 Lightning 26 324 4 610–1120 P. menziesii (0.61) – A. menziesii (0.12) 

Beaver Klamath 30 July 2014 Lightning 13 149 7 715–1441 P. menziesii (0.73) – P. ponderosa (0.15) 

Cedar Sierra Nevada 16 Aug 2016 Human 11 776 3 1776–1824 C. decurrens (0.55) – A. concolor (0.34) 

Clover Sierra Nevada 31 May 2008 Lightning 6389 6 2456–2525 P. jeffreyi (0.44) – A. concolor (0.26) 

Crag Sierra Nevada 24 July 2005 Lightning 479 1 2640 P. jeffreyi (0.66) – J. occidentalis (0.19) 

French Sierra Nevada 27 July 2014 Human 5597 2 1579–1601 P. ponderosa (0.51) – C. decurrens (0.30) 

King Sierra Nevada 13 Sept 2014 Human 39 531 3 1499–1672 P. ponderosa (0.27) – A. concolor (0.27) 

Lion Sierra Nevada 8 July 2011 Lightning 8369 9 2042–2185 P. ponderosa (0.79) – A. concolor (0.18) 

Pier Sierra Nevada 29 Aug 2017 Human 14 819 6 1486–1904 C. decurrens (0.47) – A. concolor (0.20) 

Ralston Sierra Nevada 5 Sept 2006 Unknown 3407 14 922–1301 P. ponderosa (0.26) – P. menziesii (0.24) 

Red Salmon Complex Klamath 27 July 2020 Lightning 46 436 4 656–712 P. sabiniana (0.31) – P. menziesii (0.20) 

Rim Sierra Nevada 17 Aug 2013 Human 103 670 9 1576–1875 A. concolor (0.25) – P. lambertiana (0.20) 

Rough Sierra Nevada 31 July 2015 Lightning 61 328 14 1854–2485 A. concolor (0.44) – S. giganteum (0.19) 

Somes Klamath 25 July 2006 Unknown 6275 8 419–1634 P. menziesii (0.65) – Q. densiflorus (0.15) 

Walker Sierra Nevada 4 Sept 2019 Unknown 22 101 3 1174–1710 P. ponderosa (0.96) – P. menziesii (0.04) 

Willow Sierra Nevada 25 July 2015 Human 2307 4 1324–1700 P. ponderosa (0.54) – C. decurrens (0.28) 

Number of plots denotes the number of plots that were measured pre-fire, burned and remeasured for immediate post-fire change. Dominant forest type denotes the most abundant overstorey species and 
their proportional pre-fire basal area in parenthesis. Plot ecoregions were classified according to  Miles and Goudey (1997) and are within the Klamath Mountains section (M261A) or the Sierra Nevada 
sections (M261E).  
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initiated recording on fire arrival. We measured forest vege
tation and fuels for each fuel stratum (e.g. forest canopy to 
ground fuels) at the time of plot establishment and after each 
plot burned. We determined elevation, slope, and aspect using 
1 × 1-degree 1/3 arc-second digital elevation models (United 
States Geological Survey 2020) in ArcGIS Desktop 10.6.1 
(ESRI 2020). 

Tree measurements 

We used a Spiegel Relaskop (Silvanus Inc.; Salzburg, 
Austria) to select trees for measurement in a variable radius 
plot, varying the basal area factor based on the stem density 
of each plot. In general, we chose a basal area factor so that 
5–10 pole-sized trees (2.5–15.0 cm diameter at breast height 
(1.37 m, DBH)) and 5–10 overstorey trees (>15.0 cm DBH) 
were measured in each plot. The same basal area factor was 
generally used across plots within a fire. This criterion 
balanced the need for a comprehensive assessment of the 
forest with measurement expedience in the face of advanc
ing wildfires. Variable radius plots with 5–10 trees per plot 
are largely similar to fixed-radius plots in estimating basal 
area and trees per hectare (Bitterlich 1984; Piqué et al. 
2011). We used the azimuth and distance from plot centre 
to relocate the same trees for post-fire measurements. 

Trees were identified to species, measured for DBH, tree 
height, and health-related conditions (e.g. pitch, insect gal
leries, fire scars, or evidence of mechanical damage) noted. 
To assess canopy characteristics, we used a TruPulse laser 
hypsometer (Laser Tech; Colorado, USA) to measure tree 
height, canopy base height (i.e. height of the lowest live 
foliage), and height to live crown (height to the nearest 
branch that is contiguous across ≥30° of the canopy). For 
the post-fire measurements, we revisited and assessed each 
tree for mortality, bole scorch height, partial bole consump
tion, and percentage of the canopy scorched or torched. 
Trees that were live at the pre-fire measurement were clas
sified as newly dead if all foliage was either consumed or 

scorched. Tree mortality was likely underestimated due to 
tree remeasurements occurring only a few days post-fire, 
thereby capturing only immediate mortality in contrast with 
delayed mortality, which can occur over months to years 
after fire. We present pole and overstorey tree data together 
in all tree-layer analyses. 

Surface and ground fuel measurements 

In each plot, we established one to three 15.24 m transects 
originating distal to the plot centre to minimise disrupting 
surface fuels at plot centre (Fig. 2a). These transects were 
used as the centerline of belt transects for assessing surface 
vegetation (FBAT 2022), and for a modified version of 
Brown’s Planar Intercept Method for assessing downed 
woody fuels (hereafter, Brown’s transects; Brown 1974). 
Plots established prior to 2010 (n = 43) had one or two 
transects oriented at random azimuths around plot centre, 
whereas plots established in and after 2010 (n = 69) had 
three transects oriented at 0°, 120°, and 240° azimuths. We 
measured tree seedlings, shrubs, grass, and forbs using 
1.0 m × 15.24 m belt transects along the fuel transects 
described above (Fig. 2a). We measured live and dead 
cover (% ground surface area) and mean height, and classi
fied the bulk density and morphology for each species using 
the shrub and grass photoseries in Burgan and Rothermel 
(1984), modified to also classify tree seedlings and forbs. We 
used the bulk density, average cover (%), and height to 
estimate the pre- and post-fire loadings of seedlings, shrubs, 
grasses, and forbs. We also used photos taken along each 
transect from the transect origin and end point to qualita
tively assess change in surface vegetation between pre-fire 
and post-fire images. 

We assessed downed woody fuels, litter, and duff in each 
of the three 15.24 m Brown’s transects (Brown 1974). We 
assessed 1-h (≤0.6 cm diameter) and 10-h (>0.6–2.54 cm) 
fuels from 0 to 1.82 m along the transect, 100-h fuels 
(>2.54–7.6 cm) from 0 to 3.65 m, and 1000-h fuels 

(a) (b)Fuel transect
origin

1000-h fuels

100-h fuels
1-h & 10-h

fuels

15
.2

4 
m

3.
65

 m

1.
82

 m

15.24 m 0 m

Plot center
Litter and duff depths

Vegetation
transects

Variable radius
pole-tree plot

Variable radius
overstorey tree plot

Thermocouples for
!re arrival

Camera

15.24 m

Fig. 2. A diagram of (a) the Fire Behaviour Assessment Team (FBAT) plot measurements and (b) modified Brown’s fuels transects. 
Measurements include variable radius tree plots, three modified Brown’s fuel transects ( Brown 1974), three vegetation transects, 
thermocouples for fire arrival and rate of spread, and a video camera to assess fire behaviour.   
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(>7.6 cm) along the entire transect (Fig. 2b). These size 
classes are hereafter referred to cumulatively as ‘downed 
woody fuels’. Litter and duff depths were measured at three 
locations on each transect (0.3, 1.8, and 4.8 m from the 
origin). 

Biomass calculations 

We used allometric equations to estimate aboveground 
bole biomass of living trees (Chojnacky et al. 2014) 
(Supplementary Appendix S1, Supplementary Table S2). 
For the biomass of consumed foliage, we used the compo
nent parameters for foliage (Jenkins et al. 2003) and multi
plied biomass estimates by the post-fire percentage of the 
canopy with unconsumed needles. For standing dead trees 
of decay class one or two (Lutz et al. 2020), we used species- 
specific conversion factors from Cousins et al. (2015), and 
general decay coefficients from Harmon et al. (2008) after 
subtracting estimates of foliage biomass (Supplementary 
Appendix S1, Supplementary Tables S3, S4). We modelled 
standing dead trees of decay class ≥3 as conic frustums with 
a top diameter of 0.01 cm and used the volume to estimate 
mass following the species-specific and general density val
ues of Harmon et al. (2008). For 130 trees (53% of dead 
trees) the decay classification was not recorded in the field, 
and they were treated as decay class one. 

Downed woody fuels, litter, and duff fuel loadings were 
calculated following van Wagtendonk et al. (1998). Plots 
measured during the 2007 Antelope Complex (n = 9) and 
2006 Ralston fire (n = 14) did not have post-fire under
storey vegetation measurements. To estimate post-fire load
ings for these plots, we compared pre- and post-fire photos 
of the vegetation transect to estimate the percentage change 
in understorey vegetation cover (Supplementary Appendix 
S1, Supplementary Fig. S1; Supplementary Appendix S1, 
Supplementary Table S5). Four FBAT plots located within 
the Yosemite Forest Dynamics Plot (YFDP) had spatially 
explicit mapping of pre- and post-fire tree, surface fuel, 
and understorey vegetation data of a higher resolution 
than typical FBAT measurements (Lutz et al. 2017; Cansler 
et al. 2019), which we compiled and used for these analyses 
(see Supplementary Appendix S1 Methods for a description 
of data collection at the YFDP). 

Fire weather, fuel moistures, and environmental 
characteristics 

Because fire behaviour is influenced by local fine-scale 
weather, we generated interpolated hourly weather (air 
temperature, relative humidity, precipitation, and wind 
speed and direction) for each plot. The remote automated 
weather stations (RAWS) are a widespread system of nearly 
2200 weather-recording stations across the USA. Despite 
their abundance, many areas have been historically under- 
represented by RAWS stations, particularly in California 

(Horel and Dong 2010); therefore, we used the program 
BioSIM 11.0 (Régnière et al. 2018) to generate interpolated 
hourly weather for our plots to better represent local condi
tions at the time of the fires. Prior to interpolation, BioSIM 
weights the four nearest RAWs station data according to 
their distance from the plot and the similarity in elevation 
and aspect (Supplementary Appendix S2). After interpola
tion, we visually assessed the interpolated data for outliers 
and removed any missing or anomalous measurements. 

We used interpolated RAWS hourly weather data during 
the year of plot establishment in Fire Family Plus 5.0 soft
ware (Bradshaw and McCormick 2000) to estimate fuel 
moistures for the hour of fire arrival. In cases where we 
did not know the hour of arrival (N = 58 plots), we used the 
moisture values generated for 1300 hours on the day the 
plot burned. For 1000-h fuels, we used a minimum of 
5 months of pre-fire hourly weather to incorporate seasonal 
scale. All fuel moisture variables were calculated using the 
NFDRS 2016 timber fuel model. 

We converted wind speeds from 10 m height to midflame 
using the ‘waf’ function in the R package firebehavioR 0.1.2 
(Ziegler et al. 2019) to account for surface fuel height, tree 
height, and canopy ratio following the formula of Andrews 
(2012). To assess the accuracy of the interpolated winds we 
compared them with anemometer data from a subset of 
plots where wind data were measured (Supplementary 
Appendix S1, Supplementary Fig. S2). For five plots with 
missing fuel bed height, we used the wind adjustment factor 
from the nearest (<1 km) comparable plot. 

To estimate heat load of each plot, we calculated the 
McCune Heat Load in spatialEco 1.3.7 (Evans and Ram 
2015). The McCune Heat Load is a variable used to estimate 
the potential incident solar radiation at a given location 
using latitude, slope, and aspect (McCune 2007). To esti
mate the influence of topography on soil and fuel wetness 
we calculated a one-step topographic wetness index using a 
multiple-flow-direction algorithm in SAGA 7.9.1 (Conrad 
et al. 2015). 

Calculation of remotely sensed burn severity 

To evaluate burn severity, we retrieved the differenced 
normalised burn ratio (dNBR) and the relative dNBR 
(RdNBR) from the Monitoring Trends in Burn Severity 
(MTBS) database, which utilises paired pre-fire and 1-year 
post-fire imagery to assess changes in vegetation reflectance 
(Eidenshink et al. 2007; Miller and Thode 2007). We used 
the MTBS-provided dNBR offset to account for changes in 
pre- and post-fire reflectance due to vegetation phenology 
and weather. To derive categorical burn severity, we used the 
RdNBR cutoff values of Miller and Thode (2007), which are 
empirically linked to ground-based composite burn index 
(CBI) plots in mixed-vegetation types in Sierra Nevada, 
many of which were mixed-conifer forests. All remotely 
sensed severity estimates (hereafter ‘burn severity’) were 
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extracted from 30 × 30 m pixels. The categorical burn sever
ity, in order of increasing severity, include ‘Unchanged’ 
(RdNBR < 69), ‘Low’ (69 ≤ RdNBR ≤ 315), ‘Moderate’ 
(315 < RdNBR < 641), and ‘High’ (641 ≤ RdNBR) catego
ries (Miller and Thode 2007). 

Total and flaming fire energy calculations 

To estimate total fire energy produced during the frontal 
and post-frontal phases of combustion, we multiplied the 
low heat of combustion (18 600 kJ kg−1) by the amount of 
fuel consumed in tree foliage, shrub, seedling, herbaceous, 
grass, 1- to 1000-h fuels, litter, and duff (Johnson 1996) for 
each plot. We modified the heat of combustion by 
−24 kJ kg−1 per percentage of fuel moisture (Van Wagner 
1972) for each straum of consumed fuels. One-hour fuel 
moisture was used to estimate the moisture content of the 
litter layer. To calculate the energy produced principally 
during the frontal phase of combustion (hereafter flaming 
fire energy), we used the consumption values of tree foliage, 
shrub, seedling, herbaceous, 1- to 100-h fuels, and litter, 
which is the fuel stratum most likely to directly contribute to 
frontal phase combustion. 

Statistical analyses 

Analyses were conducted with the statistical program R 
4.0.4 (R Core Team 2021), using the graphical user interface 
R Studio 1.4.1106 (R Studio Team 2020). We created 
graphs using ggplot2 3.35 (Wickham 2016) and ggpubr 
0.2.5 (Kassambara 2020). We used the Forest Vegetation 
Simulator version 20200903 (Dixon 2002) to calculate 
trees per hectare using plot-specific basal area factors. 

To assess differences in fuel loadings and relative changes 
between pre- and post-fire fuel strata, we used pairwise 
Wilcoxon Signed-rank tests with a false-discovery-rate 
p-adjustment from the stats 3.6.2 package (R Core Team 
2021). To calculate the relative change in loading by fuel 
stratum, we used the formula: 

Relative change

=
Fuel loading Fuel loading

Fuel loading
prefire postfire

prefire

The relative change by fuel stratum was not bounded 
between 0 and 1 because in some cases, the post-fire mea
surements recorded slightly increased surface or litter and 
duff fuels relative to the pre-fire conditions. Such increases 
were likely the result of new fuel deposition on a transect 
(a possibility we attempted to identify in the field as part of 
the protocol) or a transect location placement slightly off from 
the original location. Fuel-specific relative change values are 
calculated only for plots that had pre-fire fuel loading >0. 

To identify the best explanatory variables for fire energy 
we used a multi-model inference approach with model aver
aging. Multi-model inference uses Akaike’s Information 

Criterion (AICc) to rank all possible models chosen from 
an a priori list of reasonable models. Prior to model averaging 
we generated an a priori list of reasonable explanatory vari
ables and plotted pairwise correlations between variables 
using the ‘ggpairs’ function in GGally 1.5.0 (Schloerke et al. 
2020). We visually assessed correlations among variables and 
evaluated each variable’s variance inflation factor (VIF) using 
the ‘vif’ function in the car 3.0-7 package (Fox and Weisberg 
2019). We removed the highly collinear (VIF > 2.5) variables: 
air temperature; pre-fire overstorey foliage; 1-h fuel moisture; 
100-h fuel moisture; herbaceous fuel moisture; and the topo
graphic moisture index (Table 2). 

We generated all possible models, including a null model, 
and ranked the models according to the best (lowest) AICc 
score and their difference in AICc from the best performing 
model (ΔAICc). Models with a ΔAICc < 3 are considered 
excellent models (Burnham and Anderson 2002) and suitable 
for global model averaging. In multi-model inference, vari
ables are ranked according to relative variable importance 
(RVI), which is the sum of model weights in which a variable 
occurs. Variables with an RVI value >0.5 are considered 
highly influential. For the averaged model, we used the 
conservative full coefficient estimates, which biases the vari
able coefficients towards ‘0’ by averaging variables across 
models where they did not appear. We used the ‘dredge’ 
function in the MuMIn 1.43.17 package (Barton 2020) to 
weight models prior to averaging. Four plots with overall 
post-fire fuel loads higher than pre-fire (potentially due to 
newly deposited fuels) were excluded from any fire-energy 
analyses due to possible negative calculated energy values. 
To investigate differences in fire energy among types of fire 
behaviour, we used a subset of our data (n = 56) where 
video recordings and post-fire observations allowed for fire 
categorisation (i.e. heading, backing, flanking). This subset 
included heading (n = 15), backing (n = 31), and flanking 
(n = 10) plots from 14 wildfires. We used a pairwise 
Wilcoxon rank-sum test with a false-discovery rate p-adjust
adjustment to test for differences in total fire energy, flaming 
fire energy, and fuel consumption of each stratum across the 
fire types. To assess differences in the relative consumption 
of litter and duff by transect, we used an analysis of variance 
with a Tukey Honest Significant Differences comparison. 

Results 

Pre-fire fuel loadings and weather differences 
among satellite-based burn severity categories 

Mean pre-fire fuel loadings varied substantially among fuel 
strata (Fig. 3) and by fire event (Supplementary Appendix 
S1, Supplementary Table S6). The largest portion of pre-fire 
mass was contained in tree boles (both living and dead) 
(Table 3). Relatively little pre-fire fuel was contained within 
seedlings (3.3 ± 1.9 Mg ha−1), shrubs (5.5 ± 1.7 Mg ha−1), 
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grass (0.05 ± 0.02 Mg ha−1), and forbs (0.02 ± 0.00 Mg ha−1) 
(Fig. 3c–f). There were no significant differences in pre-fire 
fuel loadings among burn severity categories for 100- to 
1000-h fuels (Fig. 3j–i), whereas pre-fire 1-h fuel loadings 
were greater in high severity plots (1.3 ± 0.3 Mg ha−1) rela
tive to unchanged plots (0.9 ± 0.3 Mg ha−1). Pre-fire litter 
(20.8 ± 2.0 Mg ha−1) and duff (45.4 ± 3.6 Mg ha−1) fuel 
loadings were similar among burn severity categories. 

Pre-fire relative humidity (µ = 31 ± 1.4% s.e.) did not vary 
significantly with burn severity category (Supplementary 
Appendix S1, Supplementary Fig. S3). Downed wood fuel 
moistures were uniformly low (µ < 12%) and also did not 
vary significantly by burn severity category (Supplementary 
Appendix S1, Supplementary Fig. S4). 

Fuel consumption and relative change among 
satellite-based burn severity categories 

Total fuel consumption averaged 131.2 ± 9.2 Mg ha−1 and 
was greater with increasing dNBR values (Table 3, 
Supplementary Appendix S1, Supplementary Fig. S5a). 
Overstorey tree foliage had low absolute consumption 
(2.9 ± 0.4 Mg ha−1) and was greater in high severity (4.8 ±  
1.3 Mg ha−1) relative to unchanged severity (0.0 ±  
0.0 Mg ha−1) plots. Standing dead tree fuels increased 
post-fire, with high severity plots having greater gains in 
standing dead tree fuels (33.5 ± 6.7 Mg ha−1) compared 
with unchanged severity (0.0 ± 0.0 Mg ha−1; Fig. 3b). 
Seedling, shrub, grass, and forb fuels decreased markedly 

Table 2. The variables evaluated as predictors of total fire energy.     

Variable Mean Origin   

Slope (%) 25.00 (1.00) 1 × 1-degree 1/3 arc-second DEM 

Elevation (m)A 1586.00 (48.00) 1 × 1-degree 1/3 arc-second DEM 

McCune Heat Index 0.73 (0.01) Calculated with DEM and spatialEco 1.37 

Topographic moisture indexA −16.50 (0.20) Calculated with SAGA 

Air temperature (°C)A 24.00 (1.10) Interpolated from RAWS 

Midflame windspeed (km h−1) 2.30 (0.10) Interpolated from RAWS and FireBehavoR 

Relative humidity (%) 31.20 (1.30) Interpolated from RAWS 

1-h fuel moisture (%)A 8.40 (0.60) Interpolated from RAWS and estimated with FireFamily 5.0 

10-h fuel moisture (%) 9.50 (0.30) Interpolated from RAWS and estimated with FireFamily 5.0 

100-h fuel moisture (%)A 10.40 (0.20) Interpolated from RAWS and estimated with FireFamily 5.0 

1000-h fuel moisture (%) 11.10 (0.20) Interpolated from RAWS and estimated with FireFamily 5.0 

Live woody fuel moisture (%) 111.10 (4.60) Interpolated from RAWS and estimated with FireFamily 5.0 

Herbaceous fuel moisture (%)A 138.60 (3.40) Interpolated from RAWS and estimated with FireFamily 5.0 

Pre-fire overstorey foliage (Mg ha−1)A 13.40 (1.20) Estimated using parameter components ( Jenkins et al. 2003) and empirical measurements 

Pre-fire tree mass (Mg ha−1) 261.20 (21.40) Estimated using allometry ( Chojnacky et al. 2014) and empirical measurements 

Pre-fire standing dead tree mass (Mg ha−1) 25.40 (4.80) Estimated using allometry ( Harmon et al. 2008;  Chojnacky et al. 2014;  Cousins et al. 2015) 
and empirical measurements 

Pre-fire shrub mass (Mg ha−1) 5.50 (1.70) Estimated using allometry ( Burgan and Rothermel 1984) and empirical measurements 

Pre-fire seedling mass (Mg ha−1) 3.30 (0.30) Estimated using allometry ( Burgan and Rothermel 1984) and empirical measurements 

Pre-fire forb mass (Mg ha−1) 0.02 (0.00) Estimated using allometry ( Burgan and Rothermel 1984) and empirical measurements 

Pre-fire grass mass (Mg ha−1) 0.05 (0.02) Estimated using allometry ( Burgan and Rothermel 1984) and empirical measurements 

Pre-fire 1-h fuel mass (Mg ha−1) 0.80 (0.10) Estimated using allometry ( van Wagtendonk et al. 1998) and empirical measurements 

Pre-fire 10-h fuel mass (Mg ha−1) 2.50 (0.20) Estimated using allometry ( van Wagtendonk et al. 1998) and empirical measurements 

Pre-fire 100-h fuel mass (Mg ha−1) 4.10 (0.40) Estimated using allometry ( van Wagtendonk et al. 1998) and empirical measurements 

Pre-fire 1000-h fuel mass (Mg ha−1) 47.20 (8.40) Estimated using allometry ( van Wagtendonk et al. 1998) and empirical measurements 

Pre-fire litter mass (Mg ha−1) 20.80 (2.00) Estimated using allometry ( van Wagtendonk et al. 1998) and empirical measurements 

Pre-fire duff mass (Mg ha−1) 45.50 (3.60) Estimated using allometry ( van Wagtendonk et al. 1998) and empirical measurements 

Mean values are provided with standard errors in parentheses. 
AVariables removed from the model averaging due to unacceptable collinearity with other variables.  
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for all burn severities (Fig. 3d–f, Table 3) but accounted for 
little of the total fuel consumption. Absolute consumption 
was high for 100- to 1000-h fuels but was similar across 
burn severity categories (Fig. 3g–i). Consumption of 1-h 
fuels was greater for high severity (1.2 ± 0.5 Mg ha−1) 
relative to unchanged areas (0.6 ± 0.3 Mg ha−1). Litter 
(18.8 ± 2.0 Mg ha−1) and duff (42.0 ± 3.7 Mg ha−1) con
sumption were similar across severity categories. 

Absolute consumption (Mg ha−1) and relative change (%) 
were better explained by dNBR than by RdNBR 
(Supplementary Appendix S1, Supplementary Fig. S5). 
Relative change had a stronger relationship (R2 = 0.34) 
with dNBR than did absolute consumption (R2 = 0.14), a 

trend that was also present with RdNBR (R2 = 0.31 vs 
R2 = 0.06). Relative change varied significantly among 
burn severity categories for duff and seedling fuels (Fig. 4,  
Table 4) despite few differences in absolute consumption 
(Fig. 2). A majority of plots (66%) had incomplete consump
tion of either litter, duff, or both strata (Table 4, 
Supplementary Appendix S1, Supplementary Figs S6, S7). 
Post-fire available fuels (standing dead tree fuels, tree foli
age, downed woody fuels, shrub, and herbaceous fuels, 
litter, and duff) were strongly related to pre-fire available 
fuels for low (R2 = 0.47; P < 0.001), moderate (R2 = 0.18; 
P = 0.006), and high (R2 = 0.25; P = 0.010) burn severity 
categories. No relationship between post-fire and pre-fire 

(a)

(d)

(g)

( j) (k) (l)

(h) (i)

(e) (f )

(b) (c)Tree foliage

Shrubs

1000-h fuels

1-h fuels Litter

100-h fuels 10-h fuels

Standing dead trees

Grass Forbs

Seedlings
Pre-!re
Post-!re
Change

ab

ab ab

b

b

a a b

b b ba

bab

a ab ab b

a ab ab b

ns

ns

ns

ns ns ns

ns

ns
Duff

ns

ns ns

nsns

ns

ns

ns

a

a ab ab b

a ab ab b

a

–20

–10
–10

–5

0

5

10

0

0

25

50

75

100

Fu
el

 lo
ad

in
gs

 (
M

g 
ha

–1
)

Fu
el

 lo
ad

in
gs

 (
M

g 
ha

–1
)

Fu
el

 lo
ad

in
gs

 (
M

g 
ha

–1
)

Fu
el

 lo
ad

in
gs

 (
M

g 
ha

–1
)

10

–10

–0.50

40

20

0

–20

–40

60

30

0

–30

–60

8

4

0

–4

–8

–0.25

0.00

0.25

0.50 0.10

0.05

0.00

–0.05

–0.10

5.0

2.5

0.0

–2.5

–5.0

0

10

–100

–2

To
ta

l

U
nc

ha
ng

ed

Lo
w

M
od

er
at

e

H
ig

h

To
ta

l

U
nc

ha
ng

ed

Lo
w

M
od

er
at

e

H
ig

h

To
ta

l

U
nc

ha
ng

ed

Lo
w

M
od

er
at

e

H
ig

h

–1

0

1

2

0

100

20
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Table 3. Pre-fire and post-fire fuel loadings.                

# of 
plots 

Total Trees Standing 
dead trees 

Shrub and 
seedlings 

Grass and 
forbs 

1000-h 100-h 10-h 1-h Litter Duff   

Pre-fire fuels  

Unchanged 13 510.9 (79.6) 350.2 (66.3) 18.3 (8.1) 6.0 (3.2) 0.2 (0.1) 73.8 (36.5) 4.5 (1.1) 2.9 (0.7) 0.9 (0.3) 21.1 (4.6) 32.5 (6.1)  

Low 44 510.1 (47.9) 351.5 (41.3) 33.3 (7.7) 13.6 (5.7) 0.0 (0.0) 37.2 (12.6) 33 (0.4) 2.1 (0.2) 0.5 (0.0) 18.4 (2.3) 49.7 (7.2)  

Moderate 34 300.2 (28.9) 172.7 (21.9) 23.1 (10.4) 3.0 (0.9) 0.0 (0.0) 35.4 (10.2) 3.7 (0.6) 2.2 (0.3) 0.7 (0.1) 18.0 (2.9) 41.2 (5.6)  

High 21 349.6 (36.5) 159.6 (25.2) 16.3 (8.2) 10.0 (5.6) 0.0 (0.0) 70.8 (22.2) 6.1 (1.2) 3.2 (0.7) 1.3 (0.3) 30.2 (8.0) 51.6 (6.7) 

Post-fire fuels  

Unchanged 13 412.2 (77.3) 350.2 (66.3) 18.3 (8.1) 2.1 (1.1) 0.0 (0.0) 16.3 (7.0) 1.7 (0.8) 1.3 (0.7) 0.3 (0.1) 5.8 (1.7) 16.3 (5.8)  

Low 44 408.0 (42.3) 321.0 (43.0) 50.8 (9.8) 8.3 (4.7) 0.0 (0.0) 15.5 (7.3) 0.6 (0.1) 0.4 (0.0) 0.1 (0.0) 3.0 (0.6) 7.9 (1.7)  

Moderate 34 198.1 (23.5) 111.7 (19.2) 72.8 (18.1) 0.6 (0.3) 0.0 (0.0) 7.8 (2.3) 0.4 (0.1) 0.4 (0.0) 0.1 (0.1) 1.4 (0.3) 2.6 (0.7)  

High 21 175.7 (25.0) 81.0 (25.7) 78.3 (17.0) 1.2 (1.0) 0.0 (0.0) 6.4 (3.7) 0.6 (0.4) 0.3 (0.1) 0.0 (0.0) 2.6 (1.2) 4.9 (2.4) 

The pre- and post-fire fuel loadings (Mg ha−1) by fuel strata within mixed-conifer forests of California, USA. Total loadings includes living and dead tree boles, foliage, seedling, shrub, forbs, grass, 1- to 1000 h 
fuels, litter and duff. Standard errors are provided in parentheses. Categorical burn severity was derived from remote sensing severity cutoffs of relative difference normalised burn ratio ( Miller and Thode 
2007) and include, in order of increasing severity, ‘Unchanged’, ‘Low’, ‘Moderate’, and ‘High’.  
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available fuels were found for the unchanged severity cate
gory (Fig. 5). 

Relative and absolute fuel contributions to fire 
energy 

Total fire energy (kJ m−2) increased with increasing contin
uous values of dNBR (y = 299.2x + 134 361.8; R2 = 0.13, 
P < 0.001), but not RdNBR (y = 152.5x + 159 768.3; 
R2 = 0.05, P = 0.10). This was in contrast with categorical 
burn severity where values were similar (Fig. 6a). Total fire 
energy was largely dominated by the high consumption of 
1000-h fuels, litter, and duff (Fig. 6b). However, the absolute 
consumption of most fuel strata did not vary significantly 
among burn severity categories despite a trend of increasing 
consumption with higher burn severity (Fig. 2, Supplementary 
Appendix S1, Supplementary Fig. S5). Across the best- 
performing models (ΔAICc < 3), the most important variables 
for predicting total fire energy (RVI of 1.00) were pre-fire 
loadings of shrubs, 1000-h fuels, litter, and duff, as well as 
pre-fire standing dead tree loadings (RVI = 0.83). Total fire 
energy was also positively associated with higher relative 
humidity (RVI = 0.53), indicating higher fuel consumption 
with higher humidity (Table 5, Supplementary Appendix S1, 
Supplementary Fig. S8). Consumption of both 10-h and 1000- 
h fuels were negatively associated with fuel moisture. 

Flaming fire energy (derived from litter, seedling, shrub, 
grass, forb, and 1–100-h fuels) was similar among fire severity 
categories (Supplementary Appendix S1, Supplementary 
Fig. S9), with litter consumption the primary contributor 
(µ = 0.59 ± 0.02%). Across the best-performing models 
(ΔAICc < 3), the most important variables in predicting flam
ing fire energy were pre-fire loadings of shrubs, 100-h fuels, 
and litter (RVI = 1.0), along with 10-h fuels (RVI = 0.95) and 

standing dead tree fuel loadings (RVI = 0.65) (Supplementary 
Appendix S1, Supplementary Table S7). 

Fuel consumption and fire energy among 
heading, backing, and flanking fires 

Heading fires produced greater total fire energy than back
ing fires (P = 0.04) (Fig. 7a). Flaming fire energy showed no 
significant differences among fire advancement categories 
(Fig. 7b). The fuel differences in total fire energy between 
heading and backing fires were driven by greater litter 
(+212%; P = 0.002) and duff (+202%; P = 0.04) con
sumption relative to backing fires (Fig. 7c–d). No significant 
differences between direction of fire advancement and 
consumption were found for other fuels. There were no 
differences (P < 0.05) in pre-fire fuel loadings, moisture, 
or relative humidity among direction of fire advancement 
categories. Heading fires produced more complete con
sumption of litter (84 ± 6%; P < 0.001) and duff 
(89 ± 4% P < 0.001) than backing fires (69 ± 8% litter; 
79 ± 5% duff; Supplementary Appendix S1, Supplementary 
Figs S10, S11). Flanking fires resulted in more complete 
consumption of litter (95 ± 2%; P < 0.001) and duff 
(97 ± 1%; P < 0.001) than backing fires and were similar 
to heading fires. 

Discussion 

In this study, we quantified the relative and absolute fuel 
consumption for wildfires in mixed-conifer forests and their 
contribution to fire energy for each fuel stratum and related 
these changes to remotely sensed burn severity and to direc
tion of fire advancement. 
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Litter, duff, and 1000-h fuels are the primary 
contributors of fire energy 

The amount of litter, duff, and 1000-h fuels overwhelmingly 
contributed to fire energy across all burn severity categories. 
Our consumption estimates are similar to those from others 
reporting high fuel consumption in these strata with wild
fires in long-unburned forests (Lutz et al. 2020), which are 
10–20% greater than the consumption percentages typical 
for prescribed burns (Vaillant et al. 2009; Levine et al. 
2020). However, the similar absolute consumption of fuels 
across severity classes emphasises that satellite-derived burn 
severity metrics have limited ability to detect fuel consump
tion differences, likely due to their indirect connections with 
fine-scale surface and ground fuel consumption (Blomdahl 
et al. 2019). Indirect fire effects such as interactions 
between fire-induced tree injuries and post-fire environmen
tal stressors, such as drought or bark beetles, may contribute 
to the weak relationship between remotely sensed fire sever
ity and fuel consumption. 

Although pre-fire fuel loadings were similar across all 
burn severity categories, the relative change indicates that 
47–82% of aboveground fuels were not consumed and there
fore could be consumed in subsequent fires. A mean total of 
71% of unconsumed biomass was in live tree boles, which – 
at least in moderate to high severity wildfire – are likely to 
suffer substantial conversion from live to dead biomass 
pools (i.e. standing dead tree and downed woody debris) 
due to immediate and delayed mortality (Miesel et al. 2018;  
Lutz et al. 2020; Stephens et al. 2022). These dead wood 
fuels are then vulnerable to near-total loss during a later fire 
(Miesel et al. 2018). Additionally, incomplete combustion of 
at least one of the two litter and duff strata occurred in 74 
plots (66%), with incomplete combustion of both litter and 
duff occurring in 44 (39%) of the 112 plots. Currently, fire 
consumption models such as BURNUP or FOFEM often 
assume high or complete combustion of litter and duff in 
wildfires (Lydersen et al. 2014; Lutes 2020) and may there
fore overestimate wildfire emissions. 

Our averaged model indicated that topography and fire 
weather had relatively little influence on total or flaming 
fire energy; this result aligns with other reports that fires in 
mixed-conifer forests of California are often fuel-limited 
(Parks et al. 2018), even though broad-scale filters, such 
as fire weather, can have important impacts (Kane et al. 
2015a; Povak et al. 2020). The relationship between relative 
humidity and fire energy was weakly positive (R2 = 0.05) 
but identified as ‘important’ in our averaged model; this was 
surprising because higher relative humidity is intrinsically 
linked with higher fuel moisture and lower energy release, 
heats of combustion, spread rates, and fireline intensities 
(Van Wagner 1972; Johnson 1996). Although it is possible 
that slower spread rates could lead to more complete con
sumption by locally drying fuels, the variability in our 
dataset was quite high. Thus, we believe the weakly positive T
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relationship was likely spurious or a result of confounding 
factors also varying with relative humidity. The relatively 
poor ability for fire weather variables to predict total fire 
energy may be influenced by a dataset weighted towards 
lower severity plots, as well as by the inability to accurately 
capture extreme weather conditions due to the inaccuracy of 

our hourly fire weather interpolations at higher wind speeds 
(Supplementary Appendix S1, Supplementary Fig. S2). It is 
likely that topography (Kane et al. 2015a, 2015b) or fire 
weather (Lydersen et al. 2017) may be more strongly asso
ciated with differences in fire energy than was represented 
in our results because these variables were not adequately 
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characterised by FBAT measurements or are less important 
for low- and moderate-severity fires. 

Fuel consumption poorly correlates with satellite 
remote sensing of burn severity 

The poor performance of remote sensing metrics supports a 
body of literature, suggesting that these metrics are useful 
for some applications but insufficient for others, such as 
estimating fuel consumption (Murphy et al. 2008; Miesel 
et al. 2018; Szpakowski and Jensen 2019). Our results were 
consistent with other studies (Furniss et al. 2020a), indicat
ing that dNBR had greater correlations for both the absolute 
and relative change in fuels than did RdNBR or categorical 
severities. Results confirmed our expectation that the rela
tive dNBR (RdNBR) performed more poorly than dNBR 
in predicting absolute fuel consumption. Because remote 
sensing metrics are particularly sensitive to changes in 
photosynthetic vegetation and exposed mineral soil (van 
Wagtendonk et al. 2004), relatively large changes in dead 
woody fuels, litter, and duff – as observed in our study – may 
be undetected. In similar mixed-conifer forests, dNBR and 

RdNBR have more than 30% uncertainty in predicting basal 
area and stem mortality (Furniss et al. 2020a), highlighting 
the inherent difficulties in relating 30 × 30 m pixel scale 
burn severity to fine scale effects (Kolden et al. 2012;  
Blomdahl et al. 2019). 

Our immediate sampling of fire effects identified relatively 
little overstorey mortality (Table 3), but tree mortality cap
tured in remote sensing imagery may have occurred from 
time-lag mortality factors, which could be a combination of 
fuel consumption and other unmeasured factors such as post- 
fire drought, beetle attack, or pathogens (van Mantgem et al. 
2018; Furniss et al. 2020b). The inherent variability in fuel 
consumption estimates and lack of clear relationships with 
categorial or continuous metrics of burn severity could be 
particularly relevant when attempting to accurately estimate 
carbon emissions from wildfires or predict long-term eco
system effects (Stenzel et al. 2019). Continued development 
and implementation of new tools, such as hyperspectral imag
ery (Veraverbeke et al. 2018), airborne LiDAR (McCarley 
et al. 2020), or combinations of active and passive sensing 
may help address some of these issues and provide for better 
fuel mapping and consumption estimations from wildfire. 

Table 5. Global model summary statistics.         

Variable Estimate Std. Error Adjusted SE z value Pr(>|z|) RVI   

(Intercept)  14 924.10  36 199.20  36 464.30  0.41  0.68 NA 

Duff loadings  1519.09  224.47  226.99  6.69 P < 0.001  1.00 

Litter loadings  1868.54  385.18  389.60  4.80 P < 0.001  1.00 

Shrub loadings  1208.06  419.01  423.92  2.85  0.004  1.00 

1000-h fuel loadings  1341.16  90.64  91.66  14.63 P < 0.001  1.00 

Standing snag loadings  250.31  133.61  135.17  1.85  0.06  0.83 

Relative humidity (%)  936.27  592.66  598.85  1.56  0.12  0.53 

100-h fuel loadings  2747.37  1942.05  1965.00  1.40  0.16  0.42 

Mid-flame windspeed (km h−1)  −9844.10  6517.23  6591.99  1.49  0.14  0.38 

1000-h fuel moisture (%)  −4355.20  3692.44  3732.03  1.17  0.24  0.22 

Grass loadings  −14 330.00  14 443.5  14 609.10  0.98  0.33  0.13 

Live woody fuel moisture (%)  248.65  258.88  261.49  0.95  0.34  0.12 

10-h fuel moisture (%)  −2781.10  3013.14  3043.50  0.91  0.36  0.10 

10-h fuel loadings  3160.30  3458.19  3497.97  0.90  0.37  0.10 

Seedling loadings  −327.97  370.07  374.35  0.88  0.38  0.08 

Slope (%)  254.44  454.49  459.76  0.55  0.58  0.05 

McCune heatload  −26 493.00  53 414.70  54 048.90  0.49  0.62  0.04 

1-h fuel loadings  1932.75  8092.41  8184.08  0.24  0.81  0.03 

Herbaceous loadings  −10 526.00  43 260.90  43 771.80  0.24  0.81  0.03 

Live tree loadings  −2.13  33.82  34.22  0.06  0.95  0.03 

The variable coefficients, significance, and relative variable importance (RVI) from the models with the lowest AIC and a ΔAICc of <3.0 that were averaged to 
create to estimate the drivers of total fire energy (kJ m2). All fuel variables (Mg ha−1) represent pre-fire conditions. Significant P-values and RVI values greater than 
0.5 are bolded for clarity.  
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Heading fires consume more litter and duff than 
backing fires 

Backing fires produced significantly lower total fire energy 
than heading fires, indicating important potential differ
ences in fire effects and fire management considerations. 
Differences in fuel preconditioning or continuity of fire 
spread (i.e. less patchy spread) may explain the differences 
in greater consumption from heading fires, relative to back
ing fires, despite similar pre-fire fuel loadings. However, 
more research is needed to identify the mechanisms under
lying the differences in fuel consumption. 

These results may be important for forest management 
decisions because substantial duff consumption can cause 
mortality to large-diameter trees (Cansler et al. 2019), 
which are typically desirable to retain as live in mixed- 
conifer and other historically frequent-fire forests. Fire 
that occurs at relatively higher duff moisture content has 
greater propensity for incomplete or smouldering combus
tion (Frandsen 1987), which may help mitigate the risk of 
tree mortality (Varner et al. 2007). Backing fires may pro
duce relatively lower rates of delayed overstorey tree mor
tality and associated loss of carbon sequestration potential, 
owing to the lower total fire energy compared with heading 
fires. In contrast, heading fires may be more likely to result 
in complete canopy scorching and mortality of large trees 

than backing fires. Additionally, heading fires will likely 
produce greater carbon emissions than backing fires and 
thus larger direct contributions to climate change. More 
long-term research is needed to describe how backing and 
heading fire effects alter long-term forest resilience and 
accumulation of new fuels. Our results suggest that forest 
management actions such as thinning or prescribed fires 
that target consuming or removing litter, duff, and 1000-h 
fuels would most directly reduce total fire energy, which 
may reduce the injury and mortality of overstorey trees. 

Conclusion 

Our study showed that litter, duff, and 1000-h fuels repre
sented the primary contributors to wildfire energy, and that 
the consumption of litter and duff differ markedly with the 
direction of fire advancement. Managing wildfires to 
achieve more backing fire behaviour may limit effects on 
live trees that support the greatest aboveground biomass, 
and therefore carbon pools, and consume less of the fuels 
that contribute the most to fire energy. By reducing surface 
and ground fuels, such fire management strategies may help 
set the stage for prescribed fire treatments that more closely 
mimic historic fire regimes, thereby improving forest health 
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and resilience and decreasing the risk of future catastrophic 
fire. Further research on heading and backing wildfires 
across a range of conditions may help parse the exact mech
anisms by which heading fires consume greater amounts of 
litter and duff, and the consequences for long-term forest 
resilience. 

Supplementary material 

Supplementary material is available online. 
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